2,595 research outputs found

    Changes in Cascading Failure Risk with Generator Dispatch Method and System Load Level

    Full text link
    Industry reliability rules increasingly require utilities to study and mitigate cascading failure risk in their system. Motivated by this, this paper describes how cascading failure risk, in terms of expected blackout size, varies with power system load level and pre-contingency dispatch. We used Monte Carlo sampling of random branch outages to generate contingencies, and a model of cascading failure to estimate blackout sizes. The risk associated with different blackout sizes was separately estimated in order to separate small, medium, and large blackout risk. Results from N−1N-1 secure models of the IEEE RTS case and a 2383 bus case indicate that blackout risk does not always increase with load level monotonically, particularly for large blackout risk. The results also show that risk is highly dependent on the method used for generator dispatch. Minimum cost methods of dispatch can result in larger long distance power transfers, which can increase cascading failure risk.Comment: Submitted to Transmission and Distribution Conference and Exposition (T&D), 2014 IEEE PE

    The impact of a network split on cascading failure processes

    Full text link
    Cascading failure models are typically used to capture the phenomenon where failures possibly trigger further failures in succession, causing knock-on effects. In many networks this ultimately leads to a disintegrated network where the failure propagation continues independently across the various components. In order to gain insight in the impact of network splitting on cascading failure processes, we extend a well-established cascading failure model for which the number of failures obeys a power-law distribution. We assume that a single line failure immediately splits the network in two components, and examine its effect on the power-law exponent. The results provide valuable qualitative insights that are crucial first steps towards understanding more complex network splitting scenarios

    Interrelation of structure and operational states in cascading failure of overloading lines in power grids

    Get PDF
    As the modern power system is expected to develop to a more intelligent and efficientversion, i.e. the smart grid, or to be the central backbone of energy internet for freeenergyinteractions,securityconcernsrelatedtocascadingfailureshavebeenraisedwithconsideration of catastrophic results. The researches of topological analysis based oncomplex networks have made great contributions in revealing structural vulnerabilitiesof power grids including cascading failure analysis. However, existing literature withinappropriate assumptions in modeling still cannot distinguish the effects between thestructure and operational state to give meaningful guidance for system operation. Thispaper is to reveal the interrelation between network structure and operational statesin cascading failure and give quantitative evaluation by integrating both perspectives.For structure analysis, cascading paths will be identified by extended betweenness andquantitatively described by cascading drop and cascading gradient. Furthermore, theoperational state for cascading paths will be described by loading level. Then, the riskof cascading failure along a specific cascading path can be quantitatively evaluatedconsideringthesetwofactors.Themaximumcascadinggradientofallpossiblecascadingpaths can be used as an overall metric to evaluate the entire power grid for its featuresrelated to cascading failure. The proposed method is tested and verified on IEEE30-bussystem and IEEE118-bus system, simulation evidences presented in this paper suggest
    • …
    corecore