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Abstract—As the modern power system is expected to develop to a more intelligent and efficient version, i.e. the smart grid, or to be 

the central backbone of energy internet for free energy interactions, security concerns related to cascading failures have been raised 

with consideration of catastrophic results. The researches of topological analysis based on complex networks have made great 

contributions in revealing structural vulnerabilities of power grids including cascading failure analysis. However, existing literature 

with inappropriate assumptions in modeling still cannot distinguish the effects between the structure and operational state to give 

meaningful guidance for system operation. This paper is to reveal the interrelation between network structure and operational states in 

cascading failure and give quantitative evaluation by integrating both perspectives. For structure analysis, cascading paths will be 

identified by extended betweenness and quantitatively described by cascading drop and cascading gradient. Furthermore, the 

operational state for cascading paths will be described by loading level. Then, the risk of cascading failure along a specific cascading 

path can be quantitatively evaluated considering these two factors. The maximum cascading gradient of all possible cascading paths can 

be used as an overall metric to evaluate the entire power grid for its features related to cascading failure. The proposed method is tested 

and verified on IEEE30-bus system and  IEEE118-bus system, simulation evidences presented in this paper suggests that the proposed 

model can identify the structural causes for cascading failure and is promising to give meaningful guidance for the protection of system 

operation in the future. 

 
Index Terms—Cascading Failure, Complex Network, Cascading Path, Cascading Drop, Cascading Gradient 

 

1. INTRODUCTION 

S one of the most important public facilities, power system plays a critical role for modern society and economy. With great 

development in information and control technologies, it is expected to be upgraded to a new generation, i.e. smart grid or 

energy internet. However, on the other hand, failures in power system may cause more and more catastrophic consequences as 

observed from several historical outages in US and Europe [1]. Based on the analysis of historical records, cascading failures can 

make more serious impacts on social economy and living [2].  

Cascading outage or failure is a sequence of events in which an initial disturbance, or a set of disturbances, triggers a sequence of 

one or more dependent component outages [2].The propagation process of cascading failure is very complex by involving power 

transmission and distribution, protection system, control system, information system and even human decision-making process. 

Therefore, although people have made great progress in revealing mechanism of cascading failure and mitigate its risks [2]-[13], 

there are still no ultimate solutions. Although some of these methods have considered the problem based on both real operational 

states and structural factors for evaluation, the impact of states and structures have not been clearly distinguished and quantitatively 

evaluated respectively. Furthermore, it is still difficult for them to overcome the heavy computation burden and stochastic causal 

relations. 

After the investigation of small-world [14] and characterization of scale-free networks [15] in power grids, complex 

networks(CN) have been widely studied for the analysis about power grid security [16]-[20].Meanwhile, CN is also popularly 

applied in studying cascading failures of network systems including power grids. For isolated networks, the study of cascading 

failure in CN mainly falls into two categories [21]: first, failures due to network overload when the network flow is a physical 

quantity; second, models based on local dependences, such as the decision-making process of interacting agents. Furthermore, as 

many network systems are tightly related, a research framework for robustness of interdependent networks was also proposed [21]. 

As discussed above, the real cascading process of power grids is very complicated by involving different interdependent systems. 
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But if the study focuses on the cascading process due to line overloading, that falls into the first category where the networks are 

isolated. In this category, by considering betweenness as a type of load, a well-known cascading failure model was developed in 

CN [22]-[24]and applied to study power grids[25][26]. However, these models and methods were based on some assumptions 

which are not acceptable from the viewpoint of electrical engineering. Therefore, extended topological approaches were developed 

by taking into account both structural features and physical rules of electrical engineering [27]-[29]. Based on these approaches, the 

concept of betweenness was updated as an extended version by taking into account Power Transmission and Distribution Factors 

(PTDF) and transmission capacities [30].  Some works adopted in this updated betweenness with the former cascading model to 

study power grids[31]-[33], but they still cannot overcome the inconsistency between this cascading failure model and the real 

physical features in power grids, which will be discussed in later sections in this paper. 

Generally speaking, the progress in network science in recent years implies that the structure of power grids can possibly provide 

some inherent information related to cascading failures and thus mitigate the difficulties in analyzing them. However, up to date, 

existing models based on CN were not sufficiently unified and not convincing enough due to some unacceptable assumptions in the 

model, such as  loads, line capacity and tolerance factor, and confusion between the structure features and operational states. Most 

of them can only provide some statistical results which can be inapplicable and hard to be verified for practical system operations. 

This paper proposes a framework for the analysis of cascading failures by distinguishing the effects of structural features and 

operational states and provides quantitative indicators for system operations to prevent and defend cascading failures. For structure 

analysis, cascading paths will be identified by extended betweenness and quantitatively described by cascading drop and cascading 

gradient. Furthermore, the operational state for cascading paths will be described as the loading level. Then, the risk of cascading 

failure along a specific cascading path can be quantitatively evaluated by an integration of these two factors. The maximum 

cascading gradient of all possible cascading paths can be used as an overall metric to evaluate the whole power grid for its feature 

about cascading failure. The proposed methodology is tested on IEEE30-bus system and IEEE118-bus system, the simulation 

results indicates that the method is effective to identify the structural causes for cascading failure and can provide meaningful 

guidance for the protection of system operation. 

 

2. DISCUSSION ON FORMER CASCADING FAILURE MODELS 

In complex networks, a networked system of power grid can be modeled as a graph Y={B,L}. B (dim{B}=NB) is the set of 

vertices (or nodes), L (dim{L}=NL) is the set of edges (or lines). In the well-known former work about cascading failures in 

CN[23][25], the load of an edge was considered as the betweenness of that.  By its initial definition in CN, betweenness is the total 

number of shortest paths passing through the edge l: 

𝐵𝑙 = ∑ ∑
𝜎𝑖𝑗(𝑙)

𝜎𝑖𝑗

𝑁𝐵
𝑗

𝑁𝐵
𝑖   𝑙 ∈ 𝐿  𝑖 ≠ 𝑗 ∈ 𝐵        (1) 

where 𝜎𝑖𝑗 is the total number of shortest paths connecting vertices i and j, 𝜎𝑖𝑗(𝑙) denotes the number of shortest paths between i and 

j that pass through l.  

In the proposed model in [23][25], the load of an edge was regarded as its betweenness. The capacity of l is defined as the 

maximum load (betweenness) that l can handle: 

𝐶𝑙 = 𝛼𝐵𝑙(0)                (2) 

where Bl(0) is the load (betweenness) at initial time step 0, and Bl(t) denotes the load at time step t. α is the tolerance parameter 

which is based on the assumption that the capacity should be proportional to the initial load. To simulate a process of cascading 

failure using this model, an edge could be supposed to be cut off due to stochastic failure or intentional attack. After that, the 

change of load (betweenness) following structure variation will be recalculated and compared with the limits defined in (2). For 

any line detected with load (betweenness) higher than the corresponding limit, this line will be flagged as failed and removed from 

further calculations. This process will continue until the stopping criterion is met to model a cascading failure process. 

This model has been applied to study cascading failures for power grids  [25][26], where some nodes or edges are attacked or 

removed at time step t, the betweenness distribution was recalculated as Bl(t+1) for the next step. If the updated load Bl(t+1) 

exceeds capacity limit Cl, line l will be cut off and this procedure will further be proceeded. For power grids, this model has the 

following defects which may not be acceptable for electrical engineering. 

1. In the initial definition of betweenness, transmission of physical quantity is only considered through the shortest path. This is 

inconsistent with the fact that most paths in power grids are involved in power transmission between two buses. 

2. Load is defined as betweenness in the proposed model. In fact, betweenness is a characteristic completely determined by 

structure. In power system, the load of transmission line is the exact power flow through it which is a totally different concept from 

betweenness. 

3. Capacity is defined proportional to the initial betweenness. In power grids, capacity of a line is the maximum power through it 

according to its physical feature and protection settings, which has nothing to do with betweenness and tolerance parameter in (2). 

4. The propagation process is based on the failures arising when betweenness exceeds the capacity Cl. However, cascading 

failure of transmission line in power grid is caused by overloading of the line. Betweenness is a feature depending on structure but 

not operational states, and power flow is an indicator of operating state of the network. Even in a power grid with no power flow, 
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betweenness and this modeling procedure can still exist, so it cannot really reflect the mechanism of cascading failures. 

To overcome the defects in initial definition of betweenness, an extended version of betweenness for power grids was proposed 

in [30]. In the linear model of power systems, Power Transfer Distribution Factors (PTDFs) is used to evaluate the contribution of 

each transmission line in power transmission. PTDFs can indicate the sensitivity of the power through each line for a power 

injection/withdrawal between a couple of buses. PTDFs can be represented by a NL ×NB matrix F whose element flj represents the 

change of power on line l for a unit change in power injection at bus j and withdrawal at the reference bus. fl
gd 

is the change of the 

power on line l (l∈L)for a unit change injection at generation bus g and withdrawal at load bus d: 

𝑓𝑙
𝑔𝑑

= 𝑓𝑙𝑔 − 𝑓𝑙𝑑   𝑙 ∈ 𝐿              (3) 

Therefore, PTDF completely depends on structure and impedance of network components and is independent from operational 

states. 

Due to physical features of transmission lines and requirement of stability and security for power system, each line has its 

maximum transmission limit Pl
max

, which is different from the capacity defined in (2). This line flow limit will impose constraints 

on power transmission between any pair of buses; this can be described as the power transmission capacity 𝑀𝑔
𝑑 which is the power 

injection at generation bus g and withdrawn at load bus d when one of the lines connecting g and d first reaches its limit Pl
max

: 

𝑀𝑔
𝑑 = min𝑙∈𝐿(

𝑃𝑙
𝑚𝑎𝑥

|𝑓𝑙
𝑔𝑑

|
)              (4) 

Based on the discussion above, the line betweenness in power grids can be redefined as: 

𝑇𝑙 = max [𝑇𝑙
𝑃, |𝑇𝑙

𝑁|]𝑙 ∈ 𝐿             (5) 

Tl
P
 and Tl

N
 respectively indicate the positive and negative betweenness: 

𝑇𝑙
𝑃 = ∑ ∑ 𝑀𝑔

𝑑𝑓𝑙
𝑔𝑑

𝑑∈𝐷𝑔∈𝐺 ,  if fl
gd

>0         (6) 

𝑇𝑙
𝑁 = ∑ ∑ 𝑀𝑔

𝑑𝑓𝑙
𝑔𝑑

𝑑∈𝐷𝑔∈𝐺 ,  if fl
gd

<0         (7) 

Mg
d
fl

gd
 represents the maximum contribution of line l for power transmission from bus g to bus d. 

This definition has overcome the defect 1 by taking into account the contributions of all lines and paths in power transmission 

and considering the different flow limit of each line. Some works have been done by integrating this extended betweenness with the 

former cascading failure model [31]-[33]; however, defects 2, 3 and 4 still exist or are not completely solved. 

3. STRUCTURAL FEATURES AND OPERATIONAL STATES 

Betweenness in its original definition in CN is an indicator for how much a component is responsible for the functionality of the 

whole network based on the structure of the network. Similarly, the extended betweenness defined in (5) still depends on structure 

features of power grids and is independent from the operational states, it indicates how much a transmission line is responsible for 

the overall power transmission function of the network. However, the defects discussed above for former cascading failure 

models[22][24][30]-[32] mixed this structural metric with operational states in defining load, capacity and propagation process. 

Impacts from structural features and operational states cannot be clearly distinguished and evaluated. 

 

 
The different roles of structure and operational states in analysis of power system security were originally proposed in [29]. We 

can use the following example to explain their relations: 

 

 

 

 

 

 

 

TABLE I 
STRUCTURAL FEATURES AND OPERATIONAL STATES 

Structural features Operational states 

Connection of nodes 

and lines. 

Power injection of generation buses. 

Distribution of 
generation buses and 

load buses. 

Power consumption on load buses. 

Line flow limits and 
impedance. 

Corresponding power flow through 
each line. 

  

 

Structural 

vulnerability 

Operational 

state 

Power 

grid 
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Fig. 1 Structure and operational states 

 

Figure 1 is a schematic figure to illustrate the Cask Effect. In fact, we can imagine the cask as power grid, and its capability for 

functionality, i.e. its volume, completely depends on its structure even there is no water inside. The level of water can be considered 

as the operational state of grids, just like the power flow in power grids. The short slab is the vulnerability caused by its structure. 

However, this vulnerability will have an impact on the functionality of the cask only when the water level is higher than the short 

slab. Therefore, structure vulnerability is caused by structural features but its risk of impact on network functionality also depends 

on the operational states. In the field of cascading failures in power grids, people have realized that structural vulnerabilities may be 

part of its deep reasons, but the works up to date have not successfully distinguished and analyzed them. 

The identification of structure and operational features depends on the available details of power system model. If we adopt a 

linear power system model for DC power flow calculation, the structural features and operational states can be summarized as 

shown in Table I. Besides the topological connection of all buses and lines, the types and distribution of buses are also structure 

features. As described in (6) and (7), the locations of generation buses and load buses will influence the calculation of extended 

betwenness and capacity 𝑀𝑔
𝑑. Furthermore, the impedance and line flow limit of each line are also definite physical features 

independent from operational states. The calculation of PTDF and capacity 𝑀𝑔
𝑑 will be influenced by them. In the meantime, the 

power injected from each generation bus, and the power withdrawn to each load bus and the corresponding power flow may keep 

changing during system operations, which together describe the operational state of power grids, just like the water level of the 

cask. 

In former studies, the impacts of structure and operational states in the process of cascading failure were not clearly 

distinguished and analyzed. The first contribution of this paper is to construct an evaluation framework where the structure and 

operational state are the two different factors influencing cascading failure and will be analyzed respectively. Furthermore, they are 

also related and jointly leading to the exact cascading process. Therefore, metrics of these two factors should be integrated based on 

specific mechanism to jointly indicate the corresponding risk of cascading failure. 

Power grid 

information

Operational 

States

Structural 

Factors

Structural 

cascading 

tendency

Triggering 

force

Joint evaluation 

of cascading 

risk

 
Fig. 2 Framework for cascading failure analysis. 

Figure 2 is a diagram for the proposed framework. The mechanism of cascading failure can be considered as analogy with an 

object falling down along a slope. This process depends on two independent but closely related factors, i.e. the falling down 

tendency caused by the structure of slope (higher tendency for steeper slope) and a triggering force which may push the object 

down. Therefore, in cascading failure of power grids, there is also a cascading tendency depending on the original structure of the 

networks and a triggering force depending on the operational states. With given information about a power gird, the structure 

factors and operational states can be decomposed like table 1. Furthermore, according to the structure factors, metrics to evaluate 

the corresponding cascading tendency should be developed, i.e. the “structural” metrics, and metrics for the corresponding 

triggering force based on operational states, i.e. the “operational” metrics,  should also be defined based on which the cascading 

risk should be jointly assessed. 

Under this framework, the second contribution of this paper is to define a cascading path which is quantitatively evaluated by the 

above-mentioned structural metrics and operational metrics. The product of these two metrics defined as the cascading risk will 

indicate the exact risk of cascading failure along the corresponding cascading path. The following two sections will introduce these 
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two metrics respectively and how they jointly define the cascading risk. Together with the results of case study, the paper also 

intends to make the following three statements. 

First, some important features of cascading failures (cascading tendency) may only depend on network structures not operation 

states; 

Second, the exact triggering of cascading failures depends on both structure and operational states, but their effects could be 

evaluated respectively; 

Third, with features captured from structural analysis, it is possible to improve network structure to reduce cascading risk, or to 

give suggestions to prevent cascading failures. 

 

4. CASCADING PATH 

To capture the structure vulnerabilities for cascading failures, we still begin our illustration from betweenness. As discussed in 

Sec. II, the extended betweenness can indicate how much a transmission line is responsible for the overall functionality of the 

whole power grid. Therefore, if a line is removed, its responsibility will be taken by the other remaining lines. Correspondingly, 

after recalculation after the removal of a line, the new betweenness  of each line can be obtained (mostly increased but also possibly 

decreased compared with the initial network structure). Therefore, the cumulative change of betweenness of line l after another line 

k is removed at time step t (t=1 at beginning) can be defined as the drop of l: 

𝐷𝑙(𝑡) = [𝑇𝑙(𝑡) − 𝑇𝑙(0)]/𝑃𝑙
𝑚𝑎𝑥          (8) 

This is to indicate the change of betweenness with reference to the initial structure and normalized by its line flow limit. It is 

important to clarify that sometimes some line loading for a particular line may decrease when some other lines are removed from 

the grid. So the drop defined in (8) may be non-monotonic, and either positive or negative. Large positive Dl(t) generally means a 

tight dependency of responsibilities between l and the former removed line set H (for example H={k} at beginning), l can be called 

as a dependent line of H. Therefore, a large positive value of Dl(t) may indicate that during operation a large part of power flow on 

H may possibly be taken by l when all lines in H are removed, and so line l has a high risk to be further removed because its power 

flow is more likely to exceed its line flow limit. 

However, betweenness and Dl(t) can only give quantitative evaluation for this tendency, the real failure of a line should be 

determined by its real power flow compared with line flow limit. After all lines in H are removed, there are possibly multiple lines 

with large positive D(t) regarded as the dependent lines, and they are considered to be with higher tendency to be further removed. 

If we select one dependent line from them, for example l, and suppose it is removed due to large Dl(t) on the next time step and H 

is extended by including line l, other dependent lines for H (for example H={k, l}) can be further identified. This process may 

further continue for several time steps with selected dependent lines removed on each step, and H is extended by including the 

former removed lines step by step. Therefore, a sequence of dependent lines will be identified with corresponding drop on each 

step, for example: 

k ->l [Dl(1)] ->m [Dm(2)] ->n [Dn(3)] ->q[Dq(4)]…… 

H={k,l,m,n,q……} 

Such a sequence of dependent lines are defined as a cascading path H, and the total number of time steps is defined as its length 

N
H
, the drop of the last line in the path with reference to its initial extended betweenness is defined as the cascading drop of this path 

D
H
. 

As shown in figure 3, the cascading path can be imagined as a path on a slope. The drop of the path can be considered as the drop 

of the slope from the ground level. Therefore, the cascading tendency of the cascading path can be defined as the cascading 

gradient of the path: 

𝐺𝐻 = 𝐷𝐻/𝑁𝐻                 (9) 

 

 

 

 

 

 

 

 
 

Fig. 3 Sketch for cascading path. 

 

If two cascading paths have different length, such as: 

k ->l [Dl(1)] ->m [Dm(2)] ->n [Dn(3)] ->q[Dq(4)] 

k ->s[Ds(1)] ->r [Dr(2)] ->e [De(3)] 

It is not meaningful to directly compare their cascading drop, but cascading gradient for different paths with different length can be 

k 

l 

m 

n 

q 

N
H
=4 

D
H
 

G
H
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compared to indicate their extents of tendency, because longer length will accumulate larger cascading drop. 

In searching cascading paths for a power grid, the searching process will be stopped when the network is decomposed into 

non-connected sub-networks. If the network is partitioned into two non-connected sub-networks, the calculation process can be 

repeated for each sub-network as a new network structure to obtain the information for further propagation. 

For a power grid Y, if CP is to denote its all possible cascading paths, the maximum cascading gradient among CP is defined as 

the cascading gradient of the whole network: 

𝐺𝑌 = max𝐻∈𝑪𝑷 𝐺𝐻               (10) 

So G
Y
 is an indicator for a power grid to describe its structural vulnerability for cascading failure. It is necessary to point out that the 

cascading drop and cascading gradient calculated for two networks of different scales may not be directly compared. The 

betweenness calculated by equation (6) and (7) are based on accumulation of all possible generation-load pairs. Networks of 

different scales may have very different number of generation-load pairs. For network A and network B, if their total number of 

generation-load pairs are GLA and GLB respectively, then the cascading gradient in network B can be converted with reference to 

network A using (11): 

𝐺𝐴
𝐻 = 𝐺𝐵

𝐻 × (
𝐺𝐿𝐴

𝐺𝐿𝐵
⁄ )            (11) 

According to the definition of cascading path, in theory, any combination of lines in sequence can be considered as a cascading 

path. Therefore, for a large-scale power grid, to search and calculate its all possible cascading paths would be a computationally 

prohibited task. . 

In fact, in our analysis, we are only interested in cascading paths with a large cascading drop and gradient. Therefore, during the 

search process of cascading path, a threshold value TD for single step drop can be defined. Only lines with single-step drops higher 

than this threshold value will be considered for further calculation. Single-step drop for line l is defined as: 

𝐷𝑙
𝑠(𝑡) = [𝑇𝑙(𝑡) − 𝑇𝑙(𝑡 − 1)]/𝑃𝑙

𝑚𝑎𝑥       (12) 

The whole searching process can be indicated as figure 4. 

 

Initially cut a line i in set L at 

time step 0.

Calculate Dl(t) and Dl
s(t) of other 

remaining lines.

If Dl
s(t)>TD?

Is the power grid 

unconnected?

Output result for current 

cascading path.

Other remaining 

lines with Dl
s(t)>TD 

untested ?

End

Cut line l at next 

time step.

No

Yes

No

Yes

Yes

No

 
Fig. 4 Flowchart for the algorithm of cascading path searching. 

 

Initially, each line of the power grids will be cut off in turn with others connected. After cutting one line at time step 0, the drop 

of other remaining lines will be calculated by equation (8) and (12). These remaining lines will be tested one by one. If the drop of 
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one line l at a single step Dl
s
(t)=[Tl(t)-Tl(t-1)]/Pl

max 
is higher than the threshold TD, and the power grid is still connected as one 

network, this line l will be further cut off on next time step and l will be included in the searching cascading path. This process will 

continue until the network is discomposed into two disconnected networks and the lines in cutting sequence can be considered as 

one cascading path. During this process, if the drop of one line l at a single step is lower than the threshold Dl
s
(t)<TD, the searching 

for this cascading path will be stopped and return with no result. This is because a cascading failure propagation is a series events; 

low drop at single step means low possibility for further propagation. If multiple lines satisfying Dl
s
(t)>TD, each will be considered 

to develop a new cascading path. After finishing calculating one cascading path, all other remaining untested lines at each step with 

Dl
s
(t)>TD will be further tested by constructing another new cascading path respectively. Only when all remaining lines at all time 

steps are tested and all their single step drops are lower than TD, or an islanded sun-network is detected, the searching process will 

be stopped. With a proper setting of threshold,  this algorithm can greatly improve its computational efficiency and find out all 

possible cascading paths with drops higher than the threshold value. 

To avoid impacts of inappropriate TD, the number of paths NT in the targeted top ranking paths should firstly be set; then a step 

decay ΔT is defined. Then a new threshold value T’D = TD –ΔT can be reset and the calculation in figure 4 can be repeated. This 

process can be stopped when the detected NT top ranking cascading paths by T’D and TD respectively keep unchanged. The 

corresponding identified top ranking cascading paths then can be considered stable. 

It is important to clarify that the algorithm in figure 4 is to detect the structure vulnerability of cascading failure by cascading 

paths with the cascading gradient, but not to simulate exact process of cascading failure. This is similar to detect the steepest paths 

of a given mountain according to structure, but not to exactly tell if an object will really fall down along this path. The real process 

of cascading failure can be simulated by accurate calculation of power flow with given operational states compared with power 

flow limits of corresponding lines, which will be applied to verify the effectiveness of the detected cascading paths in the following 

case study. 

 

5. LOADING LEVEL AND CASCADING RISK 

As we have discussed above, the cascading gradient and cascading drop for a cascading path can only indicate the tendency of 

changing in responsibilities of lines due to the change of structure. With high gradient and drop, the corresponding increase in 

power flow would be possibly higher. However, like figure 1, this is only a structural vulnerability; the occurrence of cascading 

failure will also depend on the power flow level. In an extreme example, if there is no power flow in the whole power grid, no 

cascading failure can be triggered no matter how  high the gradient and drop are. 

Generally speaking, when a cascading path is identified with a high gradient, if the power flow in all the lines of this path is close 

to their power flow limit, the power flow of the first removed line k will be largely taken by other lines with high drop Dl(t) (such as 

l in figure 2) due to the structural rules described by cascading drop. Since the original load level of l is also heavy, this has a high 

possibility to make the power flow of l exceed its flow limit and to be further removed. Therefore, a cascading failure has a high 

possibility to be triggered along this cascading path. 

Therefore, we can define the loading level of a cascading path H under state S as: 

𝐿𝑆
𝐻 =

1

𝑛
∑

𝑃𝑙

𝑃𝑙
𝑚𝑎𝑥𝑙∈𝐻                 (13) 

where n is the number of lines in H, Pl is the actual power flow in line l.  

As we have discussed, the real cascading risk depends on two aspects, i.e. the structural vulnerability and corresponding 

operational state. Here we propose an evaluation framework, where the structural vulnerability can be indicated by the identified 

cascading paths with large gradient and the operational state of such paths can be described by their loading level. Hence we can 

define the cascading risk along an identified cascading path H under state S as: 

𝑅𝑆
𝐻 = 𝐺𝐻 ∙ 𝐿𝑆

𝐻                 (14) 

With the same cascading gradient, higher loading level would be with higher risks of failure; with the same loading level, higher 

gradient would be more likely to fail. We can consider two extreme situations as follows: 

1. If the cascading gradient of a path is zero, meaning when the former line is removed, there will be no change in power 

transmission responsibilities for other lines. So even the loading level is extremely high (but still lower than Pl
max

), no cascading 

failure will be triggered.  

2. If the loading level is zero, meaning there is completely no power flow in the network, even the cascading gradient is high, no 

cascading failure will be triggered. 

The real situation may be between these two extreme cases. This assessment framework has the following applications. 

1. For a typical network structure, cascading paths with higher cascading gradients can be identified in advance; loading level 

and cascading risk for these paths can be monitored during system operation. Just like discussion for figure 2, a system operator 

operating power system can be imagined as a driver driving a car on mountain slope. The steepest paths are determined by the 

mountain structure, but the driver should control the car to avoid these dangerous paths. 

2. Cascading gradient for a network in (10) can be used to assess the vulnerability of a network for cascading failure; different 

network structures can be directly compared. This can be utilized for power grid planning and design. 
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3. Measures to improve the structural vulnerabilities or attacking strategies can be quantitatively assessed by comparing network 

gradient before and after the structure changing. 

To compare with the former models in [21]-[26], we assume there are two cascading paths indicated as: l1->l2->l3->l4, and  

l1->l5->l6->l7. If l1 has been initially cut off, and then the betweenness of l2 and l5 both increase significantly. In the models proposed 

in [21]-[26], these increased betweenness will be compared with the limits defined in (2); and if they both exceed the limits, they 

will be regarded broken and invalid for further propagation. However, in the model of this paper, the increase of betweenness in 

both lines will be characterized by the cascading drop which only indicates the failure tendency due to structure.  For example, if 

the loading level of l2 is quite low and the loading level of l5 is quite high, a cascading failure will be more likely to propagate 

through the second path, but not the first one. Similarly, for the second path, if the loading levels of l5 ,l6 and l7 are all quite high, the 

failures of these three lines may happen simultaneously.  

Furthermore, due to uneven distribution of PTDF, the loading levels of lines in the same cascading path may be very different. 

For example, a cascading path with loading level of each line in percentage is indicated as : l1(100%)->l2(30%)->l3(20%)->l4(10%), 

the average loading level for the whole path is only 40%. But since the first line has been fully loaded and its loading level cannot 

be further increased, it is impossible for the path to work at further higher loading level. Therefore, even the cascading gradient for 

a path may be large; the uneven distribution of power flow in the path may reduce its actual risk of cascading failure. 

6. CASE STUDY 

The assessment framework above is applied to the IEEE30-bus system and the IEEE118-bus system respectively. The 

parameters of the test systems are from the standard data set [34]. However, one important issue about capacities of transmission 

lines needs to be clarified. In [35][36][37], cascading failures were also simulated for IEEE standard testing systems. However, the 

capacities for transmission lines in these papers were still assumed proportional to the initial loads following equation (2). As 

discussed above, this assumption is not consistent with real situation of electrical engineering. In continuous operations of 

electrical power system, it is unreasonable to define the initial load. Under this assumption, different initial load distribution leads 

to different distribution of capacity and this is obviously not reasonable as the distribution of capacity is an intrinsic structural 

characteristic. In fact, the capacity of one transmission line mainly depends on the material of conductor, diameter and also 

environment conditions. If the environment conditions are neglected, for the lines of the same voltage level with same material of 

conductor and line size, which is the case for a typical IEEE test system, the capacities of these lines can be equal. Therefore, the 

capacities of lines in the test systems here are set equal.  

The top 20 cascading paths with largest cascading gradients of  IEEE30-bus system are identified as shown in Table II. 

 

 
 

Fig. 5 The tested IEEE30-bussystem 

 

The identified cascading paths are drawn in 3D and shown in figure 6.  
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Fig. 6 Top 20 cascading paths of the IEEE30-bus system 
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TABLE II 

TOP 20 CASCADING PATHS FOR IEEE30-BUS SYSTEM 

NO. Cascading paths 
Cascading 
gradient 

1 l(4,12)-> l(9,10)->l(28,27)->l(6,10) 21.7810 

2 l(9,10)->l(4,12)->l(28,27)->l(6,10) 21.7810 

3 l(28,27)-> l(4,12)-> l(9,10)->l(6,10) 21.7810 

4 l(4,12)-> l(9,10)->l(25,27)->l(6,10) 18.4477 

5 l(9,10)->l(4,12)->l(25,27)->l(6,10) 18.4477 

6 l(4,12)-> l(9,10) ->l(6,10)->l(28,27) 17.9151 

7 l(9,10)->l(4,12)-> l(6,10)->l(28,27) 17.9151 

8 l(4,12)-> l(6,10)-> l(9,10) ->l(28,27) 17.9151 

9 l(6,10)-> l(4,12)->l(9,10)->l(28,27) 17.9151 

10 l(4,12)-> l(9,10)-> l(6,10)->l(25,27) 17.8495 

11 l(9,10)->l(4,12)->l(6,10)->l(25,27) 17.8495 

12 l(4,12)->l(6,10)->l(9,10)->l(25,27) 17.8495 

13 l(6,10)->l(4,12)->l(9,10)->l(25,27) 17.8495 

14 l(28,27)-> l(4,12)->l(6,9)->l(6,10) 16.7810 

15 l(4,12)-> l(6,9)->l(28,27)->l(6,10) 16.7810 

16 l(28,27)-> l(4,12)->l(6,10)->l(6,9) 16.6591 

17 l(4,12)-> l(9,10)->l(6,10)->l(24,25) 16.6334 

18 l(9,10)->l(4,12)->l(6,10)->l(24,25) 16.6334 

19 l(4,12)->l(6,10)-> l(9,10)->l(24,25) 16.6334 

20 l(6,10)-> l(4,12)-> l(9,10)->l(24,25) 16.6334 

l(i,j) indicates the line connecting between bus i and bus j. 

Cascadin
g Path 

Time Step 
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To evaluate the impact of operating states on the cascading paths and failure, two operating states are selected and under heavy 

and light loading levels  as shown in figure 7 where power is given in per unit values. 

 

 
Fig. 7 Two tested operational states 

 

In figure 7, positive power represents for generation and negative power for consumption. 

To verify the cascading failure results, the DC power flow of each line under two different states in figure 6 are calculated. Then 

the first line in each path of Table II is initially removed respectively, and the DC power flow is recalculated subsequently. After 

the recalculation of power flow, if the power flow of any line exceeded its line flow limit, this line is removed and the recalculation 

is repeated. This procedure is continued until no overloaded line is found or the network was split into two disconnected 

sub-networks. In Table III, the results under state 1 of figure 7 are recorded, and the cascading risk of each path under state 1 is 

calculated. 

In Table III, l
t
(i,j) indicates the line between bus i and bus j is removed at step t. For example, for path 1, the first line l(4,12) is 

initially removed at step 0, and then the second line l(9,10) in the path is removed due to overloading at step 1, then l(28,27)and 

l(6,10) are removed simultaneously due to overloading at step 2. According to the results, for cascading paths with higher 

cascading risk, cascading failures are triggered along the paths. It is necessary to point out, if the loading level of lines in paths is 
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TABLE III 

RESULTS OF CASCADING FAILURE TEST UNDER STATE1 

NO. RS1
H Cascading failure results 

1 12.05757 l0(4,12)-> l1(9,10)-> l2(28,27),l2(6,10) 

2 12.05757 l0(9,10)-> l1(4,12)-> l2(28,27),l2(6,10) 

3 12.05757 l0(28,27)-> l1(4,12)-> l2(9,10)->l3(6,10) 

4 9.72871 No cascading failure along this path. 

5 9.72871 No cascading failure along this path. 

6 9.91745 l0(4,12)-> l1(9,10)-> l2(28,27),l2(6,10) 

7 9.91745 l0(9,10)-> l1(4,12)-> l2(28,27),l2(6,10) 

8 9.91745 l0(4,12)-> l1(9,10)-> l2(28,27),l2(6,10) 

9 9.91745 l0(6,10)-> l1(4,12)->l2(9,10)->l3(28,27) 

10 9.41325 No cascading failure along this path. 

11 9.41325 No cascading failure along this path. 

12 9.41325 No cascading failure along this path. 

13 9.41325 No cascading failure along this path. 

14 6.87452 No cascading failure along this path. 

15 6.87452 No cascading failure along this path. 

16 6.82455 No cascading failure along this path. 

17 8.76766 No cascading failure along this path. 

18 8.76766 No cascading failure along this path. 

19 8.76766 No cascading failure along this path. 

20 8.76766 No cascading failure along this path. 
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high enough, the remaining lines may be broken due to overloading simultaneously, but not in sequence of time steps as indicated 

in the paths. As cascading paths with gradients only indicate a general tendency, this phenomenon can still be regarded acceptable. 

Paths 4 and 5 with higher cascading gradient but lower cascading risk compared with paths 6-9 do not have a cascading failure 

along them. But cascading failures are detected along paths 6-9. These are consistent with the analysis according to the framework. 

For the other cascading paths with lower cascading risks, no cascading failures along the paths are detected. Furthermore, for state 

2 of figure 7, the loading level and corresponding cascading risks for all paths have been significantly reduced, no cascading 

failures are detected under this state for all paths. These results are consistent with the idea in designing the cascading path and 

cascading risk. Even with high cascading gradient, cascading risk is low due to light loading level and no cascading failure has been 

detected. 

According to the definition of cascading gradient of network in (10), the cascading gradient for the IEEE30-bus system is: 

G
Y
=21.781 

In fact, as shown in figure 4, the IEEE30-bus system can be divided as two regions which are indicated by two circles in broken 

lines. Most generation buses locate in region 1 and most load buses locate in region 2. Therefore, the power transmission would 

heavily depend on the lines connecting these two regions. Most lines of the identified top 20 cascading paths locate at the borders of 

these two regions. That means, due to the structural reason, cascading failures propagating in these lines have higher probabilities. 

Of course, such cascading failures due to the fact that heavy loading levels exist in these lines in operation. 

Furthermore, to mitigate this structural vulnerability, according to the analysis above, two lines l(3,12)and l(9,27) are added to 

the border of these two regions in the network. The new network is indicated as Y+. The cascading gradient for the new network is: 

G
Y+ 

= 13.784 

Therefore, by analysis of structural vulnerability and corresponding improvement, the identified cascading failure vulnerability can 

be significantly mitigated. 

However, if we assume the line l(9,10) is out of operation due to maintenance, the corresponding network is indicated as Y-. The 

cascading gradient for the network is: 

G
Y- 

= 30.948 

The removal of some critical component will have a great impact on the network due to the arising potential vulnerability related 

to cascading failure. This approach can help to make an overall evaluation for cascading failure for any change in structure. 

Furthermore, the top 20 cascading paths with largest cascading gradients of the IEEE118-bus system were identified as shown in 

Table IV. 

 

TABLE IV 

TOP 20 CASCADING PATHS FOR IEEE118-BUS SYSTEM 

NO. Cascading Paths 
Cascading 

gradient 

1 l(65,68)->l(47,69)->l(23,24)->l(49,69) 410.3058 

2 l(65,68)-> l(49,69)->l(23,24)->l(47,69) 401.7609 

3 l(68,81)-> l(69,77)->l(75,118)->l(75,77) 320.4143 

4 l(81,80)-> l(69,77)->l(75,118)->l(75,77) 320.4143 

5 l(65,68)-> l(49,69)->l(23,24)->l(47,49) 

-> l(46,47) 
319.7799 

6 l(65,68)-> l(49,69)-> l(47,49) -> l(23,24) 

-> l(46,47) 
319.7799 

7 l(68,81)-> l(69,77)-> l(75,77) -> l(75,118) 310.0649 

8 l(81,80)-> l(69,77)-> l(75,77) -> l(75,118) 310.0649 

9 l(68,81)-> l(69,77)->l(76,118)->l(75,77) 308.4143 

10 l(81,80)-> l(69,77)->l(76,118)->l(75,77) 308.4143 

11 l(68,81)-> l(69,77)->l(76,77)->l(75,77) 307.081 

12 l(81,80)-> l(69,77)->l(76,77)->l(75,77) 307.081 

13 l(81,80)-> l(69,77)-> l(75,77) -> l(76,77) 304.0507 

14 l(68,81)-> l(69,77)-> l(75,77) -> l(76,77) 304.0507 

15 l(65,68)->l(49,69)->l(23,24)->l(47,49)->l
(47,69) 

301.3207 

16 l(65,68)-> l(49,69)-> l(47,49) -> l(23,24) 
->l(47,69) 

301.3207 

17 l(81,80)-> l(68,69)-> l(47,69) -> l(23,24) 
-> l(49,69) 

299.2293 

18 l(68,81)-> l(68,69)-> l(47,69) -> l(23,24) 
-> l(49,69) 

299.2293 

19 l(81,80)-> l(69,77)-> l(75,77) -> l(76,118) 298.954 

20 l(68,81)-> l(69,77)-> l(75,77) -> l(76,118) 298.954 

l(i,j) indicates the line connecting between bus i and bus j. 
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The maximum gradient of path 1 can be converted with reference to the IEEE30-bus system by equation (11): 

410.3058×(GLIEEE30 /GLIEEE118) = 9.671 

The structure of the IEEE118-bus system is much better than the IEEE30-bus system in terms of the cascading failure tendency. 

An operating state of IEEE118-bus system has been used for test, where the maximum loading level of the path with the 

maximum gradient is about 55%, which is similar to the loading level of the path with maximum gradient in state 1 for the 

IEEE30-bus system in table III. The first line of each path in table IV is cut off, no cascading failure is detected through the 

corresponding path. This is consistent with the former result that the structure of IEEE118-bus system is better than that of the 

IEEE30-bus system for cascading tendency. Due to uneven distribution of power flow, it is difficult for this system to operate on a 

much higher loading level in normal operation. Therefore, the total cascading risk of this system is relatively low. 

In comparison, IEEE118-bus system is also applied to evaluate the cascading failure in [35][36][37] based on their specific 

models respectively. However, the simulations in these studies cannot give concrete conclusions. In addition, the pure structural 

cascading tendency and the impact of loading level discussed here could not be evaluated in these models. As discussed before, 

they still followed the assumption of capacities in equation (2), and even made analysis for cascading characteristics corresponding 

to different tolerance factors. But as this tolerance factor does not exist in real power systems, the results could not provide 

effective supports to power system operation. 

With the simulation results from these two test systems, the proposed framework has been preliminarily justified for its 

effectiveness and validity. Under this framework, the dedicated metrics defined as cascading gradient and loading level have been 

verified as an effective tool to evaluate the cascading tendency and the triggering force in the model. Furthermore, the simulation 

results can also support the three statements made in section 3. 

7. CONCLUSION 

People have worked for a long time to analyze cascading failures in power grids based on complex networks from the structural 

perspective to enhance the protection capability of the grids from this destructive disaster. However, former studies still cannot 

provide meaningful guidance for practical power system operation due to lack of clear understanding on the relations of structure 

and operational states, as well as unreasonable assumptions with reference to electrical engineering in those analysis models. 

There are two main contributions of this paper. The first one is to propose a framework for the study of cascading failure to 

distinguish and evaluate the relationships between structure and operational states; the second one is to define two evaluation 

metrics to indicate the cascading tendency and triggering force in the framework. Furthermore, the cascading risk can be 

quantitatively assessed by integrating these two metrics. 

In case study, preliminary results were obtained to demonstrate the effectiveness of the proposed metrics. Simulation results  

implies that the proposed model can identify the most dangerous cascading paths according to structure in advance, and the risk of 

cascading failures based on such vulnerabilities can be assessed by monitoring the loading level of these cascading paths. Measures 

to mitigate structural vulnerabilities can be obtained and impacts of structural adjustments related to cascading failures can be 

assessed by this model. 

However, there is still a long way to improve this model for real system operation. The real procedure of cascading failures in 

power grids is very complex and involves a large number of components and systems. The model in terms of cascading gradient 

and loading level is only one way to realize the proposed framework. Another object of this paper is to encourage more solutions 

within the framework of interrelation between structure and operational states. We believe that in our future work, better metrics 

indicating cascading tendency and triggering force could be found in the future, and better algorithms to detect most critical 

cascading paths more efficiently need to be developed. Following that, the analysis based on the interrelation of structure and 

operational states will provide more effective guidance for system operation.  
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