6,804 research outputs found

    Resistance to carbapenems in non-typhoidal Salmonella enterica serovars from humans, animals and food

    Get PDF
    Non-typhoidal serovars of Salmonella enterica (NTS) are a leading cause of food-borne disease in animals and humans worldwide. Like other zoonotic bacteria, NTS have the potential to act as reservoirs and vehicles for the transmission of antimicrobial drug resistance in different settings. Of particular concern is the resistance to critical “last resort” antimicrobials, such as carbapenems. In contrast to other Enterobacteriaceae (e.g., Klebsiella pneumoniae, Escherichia coli, and Enterobacter, which are major nosocomial pathogens affecting debilitated and immunocompromised patients), carbapenem resistance is still very rare in NTS. Nevertheless, it has already been detected in isolates recovered from humans, companion animals, livestock, wild animals, and food. Five carbapenemases with major clinical importance—namely KPC (Klebsiella pneumoniae carbapenemase) (class A), IMP (imipenemase), NDM (New Delhi metallo-ÎČ-lactamase), VIM (Verona integron-encoded metallo-ÎČ-lactamase) (class B), and OXA-48 (oxacillinase, class D)—have been reported in NTS. Carbapenem resistance due to the production of extended spectrum- or AmpC ÎČ-lactamases combined with porin loss has also been detected in NTS. Horizontal gene transfer of carbapenemase-encoding genes (which are frequently located on self-transferable plasmids), together with co- and cross-selective adaptations, could have been involved in the development of carbapenem resistance by NTS. Once acquired by a zoonotic bacterium, resistance can be transmitted from humans to animals and from animals to humans through the food chain. Continuous surveillance of resistance to these “last resort” antibiotics is required to establish possible links between reservoirs and to limit the bidirectional transfer of the encoding genes between S. enterica and other commensal or pathogenic bacteria

    Carbapenem Resistance in Clinical Isolates of Enterobacteriaceae : A Global Health Concern

    Get PDF
    Introduction: Carbapenem-resistant Enterobacteriaceae (CRE) has gradually emerged and is one of the serious public health concerns worldwide. Aim: To detect Carbapenem Resistance in clinical isolates of Enterobacteriaceae and Carbapenamase production by performing Modified Hodge Test (MHT) and Combined Disc Test (CDT). Material & Methods: Identification of Isolates was done by standard bacteriological techniques. The isolates were screened for carbapenem resistance by Kirby-bauer disc diffusion method using Ertapenem as per CLSI recommendation. Detection of carbapenemase production was done by Modified Hodge test and Combined Disc test. Result: A total of 931 clinical isolates of Enterobacteriaceace were obtained from various clinical samples. Out of which isolates of Escherichia coli were 295 (31.68%). All these isolates were screened for Carbapenem resistance..Out of 931 isolates, 710 (76.26%) isolates were carbapenem screen positive. Maximum carbapenem resistance was seen in Klebsiella pneumoniae, 307 (43.23 %). Out of 710 carbapenem resistant isolates, 567 (79.85%) were carbapenemase producers.  Conclusion: Early detection, isolation and contact precaution for CRE patient will to prevent rapid dissemination of CRE infection. Keywords: Carbapenem resistance, Enterobacteriacae, Modified Hodge Test

    Carbapenem Resistance: Mechanisms and Drivers of Global Menace

    Get PDF
    The emergence of carbapenem-resistant bacterial pathogens is a significant and mounting health concern across the globe. At present, carbapenem resistance (CR) is considered as one of the most concerning resistance mechanisms and mainly found in gram-negative bacteria of the Enterobacteriaceae family. Although carbapenem resistance has been recognized in Enterobacteriaceae from last 20 years or so, recently it emerged as a global health issue as CR clonal dissemination of various Enterobacteriaceae members especially E. coli, and Klebsiella pneumoniae are reported from across the globe at an alarming rate. Phenotypically, carbapenems resistance is in due to the two key mechanisms, like structural mutation coupled with ÎČ-lactamase production and the ability of the pathogen to produce carbapenemases which ultimately hydrolyze the carbapenem. Additionally, penicillin-binding protein modification and efflux pumps are also responsible for the development of carbapenem resistance. Carbapenemases are classified into different classes which include Ambler classes A, B, and D. Several mobile genetic elements (MGEs) have their potential role in carbapenem resistance like Tn4401, Class I integrons, IncFIIK2, IncF1A, and IncI2. Taking together, resistance against carbapenems is continuously evolving and posing a significant health threat to the community. Variable mechanisms that are associated with carbapenem resistance, different MGEs, and supplementary mechanisms of antibiotic resistance in association with virulence factors are expanding day by day. Timely demonstration of this global health concern by using molecular tools, epidemiological investigations, and screening may permit the suitable measures to control this public health menace

    The porin and the permeating antibiotic: A selective diffusion barrier in gram-negative bacteria

    Get PDF
    Gram-negative bacteria are responsible for a large proportion of antibiotic resistant bacterial diseases. These bacteria have a complex cell envelope that comprises an outer membrane and an inner membrane that delimit the periplasm. The outer membrane contains various protein channels, called porins, which are involved in the influx of various compounds, including several classes of antibiotics. Bacterial adaptation to reduce influx through porins is an increasing problem worldwide that contributes, together with efflux systems, to the emergence and dissemination of antibiotic resistance. An exciting challenge is to decipher the genetic and molecular basis of membrane impermeability as a bacterial resistance mechanism. This Review outlines the bacterial response towards antibiotic stress on altered membrane permeability and discusses recent advances in molecular approaches that are improving our knowledge of the physico-chemical parameters that govern the translocation of antibiotics through porin channel

    Prospective Multicenter Study of the Impact of Carbapenem Resistance on Mortality in Pseudomonas aeruginosa Bloodstream Infections

    Get PDF
    The impact of antimicrobial resistance on clinical outcomes is the subject of ongoing investigations, although uncertainty remains about its contribution to mortality. We investigated the impact of carbapenem resistance on mortality in Pseudomonas aeruginosa bacteremia in a prospective multicenter (10 teaching hospitals) observational study of patients with monomicrobial bacteremia followed up for 30 days after the onset of bacteremia. The adjusted influence of carbapenem resistance on mortality was studied by using Cox regression analysis. Of 632 episodes, 487 (77%) were caused by carbapenem-susceptible P. aeruginosa (CSPA) isolates, and 145 (23%) were caused by carbapenem-resistant P. aeruginosa (CRPA) isolates. The median incidence density of nosocomial CRPA bacteremia was 2.3 episodes per 100,000 patient-days (95% confidence interval [CI], 1.9 to 2.8). The regression demonstrated a time-dependent effect of carbapenem resistance on mortality as well as a significant interaction with the Charlson index: the deleterious effect of carbapenem resistance on mortality decreased with higher Charlson index scores. The impact of resistance on mortality was statistically significant only from the fifth day after the onset of the bacteremia, reaching its peak values at day 30 (adjusted hazard ratio for a Charlson score of 0 at day 30, 9.9 [95% CI, 3.3 to 29.4]; adjusted hazard ratio for a Charlson score of 5 at day 30, 2.6 [95% CI, 0.8 to 8]). This study clarifies the relationship between carbapenem resistance and mortality in patients with P. aeruginosa bacteremia. Although resistance was associated with a higher risk of mortality, the study suggested that this deleterious effect may not be as great during the first days of the bacteremia or in the presence of comorbidities

    Diversity in Acinetobacter baumannii isolates from paediatric cancer patients in Egypt

    Get PDF
    Acinetobacter baumannii is an important nosocomial pathogen, commonly causing infections in immunocompromised patients. It is increasingly reported as a multidrug-resistant organism, which is alarming because of its capability to resist all available classes of antibiotics including carbapenems. The aim of this study was to examine the genetic and epidemiological diversity of A. baumannii isolates from paediatric cancer patients in Egypt, by sequencing the intrinsic blaOXA -51-like gene, genotyping by pulsed-field gel electrophoresis and multi-locus sequence typing in addition to identifying the carbapenem-resistance mechanism. Results showed a large diversity within the isolates, with eight different blaOXA -51-like genes, seven novel sequence types and only 28% similarity by pulsed-field gel electrophoresis. All three acquired class-D carbapenemases (OXA-23, OXA-40 and OXA-58) were also identified among these strains correlating with resistance to carbapenems. In addition, we report the first identification of ISAba2 upstream of blaOXA -51-like contributing to high-level carbapenem resistance. This indicates the presence of several clones of A. baumannii in the hospitals and illustrates the large genetic and epidemiological diversity found in Egyptian strains

    Molecular characterization of carbapenem-resistant Acinetobacter species in an Irish university hospital: predominance of Acinetobacter genomic species 3

    Get PDF
    A 30 month prospective study of Acinetobacter species encountered in the Central Pathology Laboratory of St James's Hospital, Dublin, Ireland, was conducted to investigate the prevalence and molecular epidemiology of carbapenem resistance in such isolates. Acinetobacter genomic species 3 (AG3) was found to be the predominant Acinetobacter species (45/114, 39 %) in our institution. A total of 11 % of all Acinetobacter species (12/114) and 22 % of AG3 isolates (10/45) were carbapenem resistant. Carbapenem resistance was mediated by Ambler class D beta-lactamase OXA-23 in all 12 isolates, with insertion sequence ISAba1 found upstream of bla(OXA-23). ISAba1 was also found upstream of bla(ADC-25), which encodes the enzyme AmpC, in an Acinetobacter baumannii isolate, and upstream of the aminoglycoside-acetyltransferase-encoding gene aacC2 in three AG3 isolates. Inter-species plasmidic transfer was most likely involved in the emergence and spread of bla(OXA-23) among the Acinetobacter isolates within our institution. The emergence of carbapenem resistance was associated not only with prior carbapenem use but also with the use of other antimicrobial agents, most notably beta-lactam/beta-lactamase-inhibitor combinations. The study demonstrated the emerging trend of carbapenem resistance in the wider context of the Acinetobacter genus, and reiterated the paramount importance of the prudent use of antimicrobial agents, stringent infection control measures and resistance surveillance of pathogens

    A blaVIM-2 Plasmid Disseminating in Extensively Drug-Resistant Clinical Pseudomonas aeruginosa and Serratia marcescens Isolates

    Get PDF
    Infections caused by carbapenem-resistant Enterobacteriaceae isolates are an issue of major global concern (1). Genes coding for metallo-ÎČ-lactamases (MÎČLs) identified in clinical isolates are associated with mobile elements and subject to horizontal genetic transfer (HGT) events (2–6). VIM-2 is present on numerous plasmids, but only pNOR-2000 from Pseudomonas aeruginosa COL-1 from France (7, 8) and pLD209 from Pseudomonas putida LD209 from Argentina (9) have been completely sequenced. Here, we report the complete sequence and characterization of plasmid pDCPR1 harboring a blaVIM-2 gene cassette in a Tn402-type class 1 integron, which was isolated from two extensively drug-resistant strains: P. aeruginosa 802 (from a burn patient at the Hospital Municipal de Quemados, Argentina, 2005) and S. marcescens 68313 (Sanatorio Sagrado CorazĂłn, Argentina, 2012).Fil: Vilacoba, Elisabet. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de Investigaciones en MicrobiologĂ­a y ParasitologĂ­a MĂ©dica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en MicrobiologĂ­a y ParasitologĂ­a MĂ©dica; ArgentinaFil: Quiroga, Cecilia. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de Investigaciones en MicrobiologĂ­a y ParasitologĂ­a MĂ©dica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en MicrobiologĂ­a y ParasitologĂ­a MĂ©dica; ArgentinaFil: Pistorio, Mariano. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata. Instituto de BiotecnologĂ­a y BiologĂ­a Molecular. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de BiotecnologĂ­a y BiologĂ­a Molecular; ArgentinaFil: Famiglietti, Angela MarĂ­a Rosa. Universidad de Buenos Aires. Facultad de Medicina. Hospital de ClĂ­nicas General San MartĂ­n; ArgentinaFil: Rodriguez, Hernan Bernardo. Universidad de Buenos Aires. Facultad de Medicina. Hospital de ClĂ­nicas General San MartĂ­n; ArgentinaFil: Kovensky, Jaime. Ciudad AutĂłnoma de Buenos Aires. Hospital Municipal de Quemados; ArgentinaFil: Deraspe, Maxime. UniversitĂ© du QuĂ©bec a Montreal; CanadĂĄ. Laval University; CanadĂĄFil: Raymond, FrĂ©dĂ©ric. UniversitĂ© du QuĂ©bec a Montreal; CanadĂĄ. Laval University; CanadĂĄFil: Roy, Paul H.. UniversitĂ© du QuĂ©bec a Montreal; CanadĂĄ. Laval University; CanadĂĄFil: Centron, Daniela. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de Investigaciones en MicrobiologĂ­a y ParasitologĂ­a MĂ©dica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en MicrobiologĂ­a y ParasitologĂ­a MĂ©dica; Argentin

    Antimicrobial susceptibility against metronidazole and carbapenem in clinical anaerobic isolates from Pakistan

    Get PDF
    Background: Globally metronidazole and carbapenem resistance in anaerobic organisms is increasing necessitating continuous surveillance to guide selection of empirical treatment. In this study we have determined metronidazole resistance in anaerobes using MIC Evaluator strips (M.I.C.E strips). Carbapenem resistance was evaluated only in metronidazole resistant isolates.Material and methods: The study was conducted at the Aga Khan University (AKU) Hospital laboratory, Karachi, Pakistan (2014–2017). Metronidazole and imipenem resistance was evaluated using M.I.C.E strips and minimum inhibitory concentrations (MICs) were interpreted using Clinical Laboratory Standards Institute (CLSI) criteria. Clinical details including demographics, prolonged hospital stay, malignancy, transplant, dialysis, diabetes, site of infection and outcome were analyzed for association with metronidazole resistance. Results: Of the 223 clinically significant isolates, 39 (17.5%) were metronidazole resistant (excluding the inherently resistant organisms; for example Cutibacterium species). Imipenem resistance was determined in 29 metronidazole resistant isolates and of these 7 (24.1%) were found to be resistant. Proportion of metronidazole resistant strains was highest amongst Bacteroides species. A significant increase in metronidazole resistance from 12.3% in 2010–2011 to 17.5% in the current study was found. Carbapenem resistance also emerged in the period 2014–2017. Isolates from malignancy and transplant patients showed lower odds of developing metronidazole resistance (0.003(95% CI: 1.7–17.9)). Prolonged hospital stay was not associated with metronidazole resistance (1.1((95% CI: 0.5–2.5)).Conclusion: The rising trend of metronidazole resistance and emergence of carbapenem resistance in anaerobic bacteria is alarming. Continued surveillance with strengthening of laboratory capacity regarding anaerobic susceptibility testing is urgently needed in Pakistan
    • 

    corecore