227,804 research outputs found

    Long-term fate of sewage-sludge derived cadmium in arable soils

    Get PDF
    The focus of this work was to improve knowledge of the long-term fate of cadmium supplied to arable soils by sewage sludge. Emphasis was placed on measured and modelled changes in the solubility and mobility of cadmium, resulting from long-term turnover of both sludge-derived and inherent organic matter of the soil. Measurements were conducted in a long-term sludge supplied field experiment, situated at Ultuna (60°N, 17°E), started in 1956. Furthermore, batch studies on soil samples and modelling exercises in WHAM were performed in order to study the speciation of cadmium in the soil-solution system. A comprehensive model -the SLAM model- was developed to increase the understanding of the influence of soil and sludge adsorption characteristics on cadmium solubility and bioavailability, and the migration rate of cadmium in soil profiles. The long-term sludge supplies had increased the solubility of cadmium, measured in crop cadmium concentration, as an effect of enhanced acidification and increased Cd concentration in the soil. A low Cd migration was measured, attributed to non-equilibrium Cd concentration in percolating water, a high cadmium sorption capacity in the subsoil and root driven Cd circulation in the soil profile. No increased Cd sorption capacity was measured in the sludge supplied soil, despite the almost doubled soil organic matter content. This might be partly attributed to the higher iron oxide and hydroxide concentration measured in the sludge, forming more stable complexes with soil humic compounds compared to cadmium complexes with soil humic compounds. A Monte-Carlo analysis of the SLAM model suggested that the major parameters affecting leaching and crop uptake of cadmium were the cadmium loading and the partitioning coefficient for sludge-derived inorganic material and parameters controlling the effect of pH on sorption. Long-term scenario simulations in SLAM identified critical factors influencing plant cadmium uptake: the cadmium concentration in the sludge, the adsorption capacity of the sludge in relation to the adsorption capacity of native soil and the proportion of the sludge adsorption capacity contributed by the inorganic fraction

    X-ray diffraction study of cadmium hydroxyapatite

    Get PDF
    Solid solutions of cadmium and calcium hydroxyapatite [Ca10−x Cdx (PO4)6 (OH)2 (0 ≤ x ≤ 10)] were synthesized by a wet process in a basic medium. The lattice dimensions of these compounds vary linearly with the atom percent cadmium. The distribution of the calcium and cadmium ions between two non- equivalent crystallographic sites, (1) and (2), were determined by the Rietveld method. The site-occupancy factors of atoms indicate a slight preference of cadmium for site (2) in the apatite structure

    Synthesis of CdS and CdSe nanoparticles by thermolysis of diethyldithio- or diethyldiseleno-carbamates of cadmium

    Get PDF
    Cadmium sulfide and cadmium selenide nanoparticles have been synthesised by a novel route involving the thermal decomposition of the bisdiethyldithio- or bisdiethyldiseleno-carbamates of cadmium in refluxing 4-ethylpyridine solutions. The nanodispersed materials were studied by electronic spectroscopy and bandgaps were blue shifted. Transmission electron microscopy of the samples showed material to be in the nanosize range and crystalline

    Cadmium accumulation and interactions with zinc, copper, and manganese, analysed by ICP-MS in a long-term Caco-2 TC7 cell model

    Get PDF
    The influence of long-term exposure to cadmium (Cd) on essential minerals was investigated using a Caco-2 TC7 cells and a multi-analytical tool: microwave digestion and inductively coupled plasma mass spectrometry. Intracellular levels, effects on cadmium accumulation, distribution, and reference concentration ranges of the following elements were determined: Na, Mg, Ca, Cr, Fe, Mn, Co, Ni, Cu, Zn, Mo, and Cd. Results showed that Caco-2 TC7 cells incubated long-term with cadmium concentrations ranging from 0 to 10 lmol Cd/l for 5 weeks exhibited a significant increase in cadmium accumulation. Furthermore, this accumulation was more marked in cells exposed long-term to cadmium compared with controls, and that this exposure resulted in a significant accumulation of copper and zinc but not of the other elements measured. Interactions of Cd with three elements: zinc, copper, and manganese were particularly studied. Exposed to 30 lmol/l of the element, manganese showed the highest inhibition and copper the lowest on cadmium intracellular accumulation but Zn, Cu, and Mn behave differently in terms of their mutual competition with Cd. Indeed, increasing cadmium in the culture medium resulted in a gradual and significant increase in the accumulation of zinc. There was a significant decrease in manganese from 5 lmol Cd/l exposure, and no variation was observed with copper. Abbreviation: AAS – Atomic absorption spectrometry; CRM– Certified reference material; PBS – Phosphate buffered saline without calcium and magnesium; DMEM – Dubelcco’s modified Eagle’s medium

    Cadmium transport in sediments by tubificid bioturbation: An assessment of model complexity

    Get PDF
    Biogeochemistry of metals in aquatic sediments is strongly influenced by bioturbation. To determine the effects of biological transport on cadmium distribution in freshwater sediments, a bioturbation model is explored that describes the conveyor-belt feeding of tubificid oligochaetes. A stepwise modelling strategy was adopted to constrain the many parameters of the model: (i) the tubificid transport model was first calibrated on four sets of microspheres (inert solid tracer) profiles to constrain tubificid transport; (ii) the resulting transport coefficients were subsequently applied to simulate the distribution of both particulate and dissolved cadmium. Firstly, these simulations provide quantitative insight into the mechanism of tubificid bioturbation. Values of transport coefficients compare very well with the literature, and based on this, a generic model of tubificid bioturbation is proposed. Secondly, the application of the model to cadmium dataset sheds a light on the behaviour of cadmium under tubificid bioturbation. Cadmium enters the sediment in two ways. In one pathway, cadmium enters the sediment in the dissolved phase, is rapidly absorbed onto solid particles, which are then rapidly transported to depth by the tubificids. In the other pathway, cadmium is adsorbed to particles in suspension in the overlying water, which then settle on the sediment surface, and are transported downwards by bioturbation. In a final step, we assessed the optimal model complexity for the present dataset. To this end, the two-phase conveyor-belt model was compared to two simplified versions. A solid phase-only conveyorbelt model also provides good results: the dissolved phase should not be explicitly incorporated because cadmium adsorption is fast and bioirrigation is weak. Yet, a solid phase-only biodiffusive model does not perform adequately, as it does not mechanistically capture the conveyor-belt transport at short time-scales

    Girl or boy? Prenatal lead, cadmium and mercury exposure and the secondary sex ratio in the ALSPAC study

    Get PDF
    AbstractThe aim of this study was to evaluate the effect of prenatal exposure to lead, cadmium and mercury levels on the secondary sex ratio. Whole blood samples were collected from pregnant women enrolled in the Avon Longitudinal Study of Parents and Children (ALSPAC) study at a median gestational age of 11 weeks and were analyzed for lead, cadmium and mercury. Regression analysis was used to identify associations between maternal lead, cadmium and mercury levels and the secondary sex ratio with adjustment for confounders. There was no evidence for associations between maternal lead, cadmium or mercury levels and the secondary sex ratio in this sample. It appears unlikely that alterations in the secondary sex ratio are influenced by exposure to heavy metals, but further work should be done in large cohorts in other countries to confirm these findings

    Secondary cadmium-air batteries

    Get PDF
    Sponge cadmium electrodes for secondary cadmium-air batterie

    Electron beam recrystallization of amorphous semiconductor materials

    Get PDF
    Nucleation and growth of crystalline films of silicon, germanium, and cadmium sulfide on substrates of plastic and glass were investigated. Amorphous films of germanium, silicon, and cadmium sulfide on amorphous substrates of glass and plastic were converted to the crystalline condition by electron bombardment

    Electrochemical sintering process for producing electrodes from cadmium felt and a nickel or silver grid

    Get PDF
    Electrochemical sintering process produces cadmium felt electrodes. Two pieces of cadmium felt are sandwiched around a nickel screen or silver expanded metal grid, held together by mold compression, and electrochemically sinitered by being put through several charge and discharge cycles at low current density

    Different patterns of uptake and depuration of cadmium by periphyton community and a grazer species (Physa sp.): A mesocosm evalution

    Get PDF
    Widespread pollution by heavy metals generated by various industries has serious adverse effects on human health and the environment. Cadmium is a heavy metal recognised as one of the most hazardous environmental pollutants. It is a non-essential and non-beneficial element to organisms, causing toxicity and other deleterious effects on various components of the aquatic environment. The ability of algal periphyton to concentrate cadmium from fresh water is well known. Moreover, periphyton communities are able to accumulate large amounts of cadmium despite its low concentration in fresh water. Many researchers use algal periphyton as an indicator of water quality in aquatic environments. In the present study, the authors ask two basic questions: Does cadmium accumulate along a food chain consisting of the periphyton community and a grazer species (Physa sp.) under semi-natural conditions provided by artificial streams? If not, which one can better indicate the water quality
    corecore