3 research outputs found

    Self-Isolated Dual-Mode High-Pass Birdcage RF Coil for Proton and Sodium MR Imaging at 7 T MRI

    Get PDF
    This study presents the feasibility of a dual-mode high-pass birdcage RF coil to acquire MR images at both 1H and 23Na frequencies at ultra-high-field MR scanner, 7 T. A dual-mode circuit (DMC) in the dual-mode birdcage (DMBC) RF coil operates at two frequencies, addressing the limitations of sensitivity reduction and isolation between two frequencies as in traditional dual-tuned RF coil. Finite-difference time-domain (FDTD) based electromagnetic (EM) simulations were performed to verify the RF coil at each frequency on the three-dimensional human head model. The DMBC RF coil resonated at proton (1H) and sodium (23Na) frequencies, and also single-tuned high-pass birdcage RF coils were constructed for both 1H and 23Na frequencies. The bench test performance of the RF coils was evaluated using network analysis parameters, including the measurement of scattering parameters (S-parameters) and quality factors (Q-factors). Q-factor of the DMBC coil at 1H port was 10.2% lower than that of 1H single-tuned birdcage (STBC) coil, with a modest SNR reduction of 6.5%. Similarly, the Q-factor for the DMBC coil at 23Na port was 12.3% less than that of 23Na STBC coil, and the SNR showed a minimal reduction of 5.4%. Utilizing the DMBC coil, promising 1H and 23Na MR images were acquired compared to those by using STBC coils. In conclusion, deploying a DMBC 1H/23Na coil has been demonstrated to overcome traditional constraints associated with dual-tuned RF coils, achieving this with only nominal signal attenuation across both nuclei operational frequencies

    Evaluation of instrumented cable bolts in cement grout to determine physical and numerical modeling properties

    Get PDF
    "Whereas many researchers and mine engineers have conducted tests on cable bolts using various grouts, water:cement ratios, and physical modifications of the cable to determine the load-carrying characteristics of a bolt, few studies have been conducted on cable bolts fitted with internal instruments. Those studies that have been done have concentrated on cable response averaged over significant (6.1 m) cable lengths. Researchers at the Spokane Research Laboratory (SRL) of the National Institute for Occupational Safety and Health in Spokane, W A, are investigating the physical properties of cable bolts by replacing the conventional king wire with a modified king wire on which strain gauges have been installed. A numerical analysis was performed to match laboratory results. Loads calculated by the model were then compared to loads measured in the laboratory on 1.83-m-long cables grouted into two 0.91-m-long pull-tube assemblies. Load along the cable was monitored with 20 strain gauges installed along the length of the cable. This paper documents test results on these modified cable bolts. The instrumented cable bolt provided reproducible point measurements of cable load as opposed to load measurements averaged over long cable lengths. Such point measurements can assist in interpreting the influence of cable confinement, grout quality, rock mass stiffness, and other factors. The instrumented cable bolt is a practical field and research tool because it can predict point loading along the cable. The instrument has been successfully field tested at FMC's Granger Mine, Granger, WY; the Meikle Mine, Carlin, NY; the Stillwater Mine, Nye, MT; and the Getchell Mine, Golconda, NY. By monitoring load and displacement of the rock mass using these instrumented bolts, more-effective ground support can be selected and installed, which will lead to safer working conditions for miners." - NIOSHTIC-2by Lewis Martin, Doug Milne, Marc Ruest, and Rimas Pakalnis."April 2004 ".Also available via the World Wide Web

    Numerical and Analytical Methods in Electromagnetics

    Get PDF
    Like all branches of physics and engineering, electromagnetics relies on mathematical methods for modeling, simulation, and design procedures in all of its aspects (radiation, propagation, scattering, imaging, etc.). Originally, rigorous analytical techniques were the only machinery available to produce any useful results. In the 1960s and 1970s, emphasis was placed on asymptotic techniques, which produced approximations of the fields for very high frequencies when closed-form solutions were not feasible. Later, when computers demonstrated explosive progress, numerical techniques were utilized to develop approximate results of controllable accuracy for arbitrary geometries. In this Special Issue, the most recent advances in the aforementioned approaches are presented to illustrate the state-of-the-art mathematical techniques in electromagnetics
    corecore