336 research outputs found

    Control of aromatic biosynthesis in Neurospora crassa

    Get PDF
    Control of aromatic biosynthesi

    Increased activity of the first two enzymes of tryptophan biosynthesis

    Get PDF
    Increased activity of the first two enzymes of tryptophan biosynthesi

    Antimicrobial Activity of Biogenic Silver Nanoparticles from Syzygium aromaticum against the Five Most Common Microorganisms in the Oral Cavity

    Get PDF
    ARTICULO DE ACCESO LIBREAbstract: Syzygium aromaticum (clove) has been used as a dental analgesic, an anesthetic, and a bioreducing and capping agent in the formation of metallic nanoparticles. The main objective of this study was to evaluate the antimicrobial effect in oral microorganisms of biogenic silver nanoparticles (AgNPs) formed with aqueous extract of clove through an ecofriendly method “green synthesis”. The obtained AgNPs were characterized by UV-Vis (ultraviolet-visible spectroscopy), SEM-EDS (scanning electron microscopy–energy dispersive X-ray spectroscopy), TEM (transmission electron microscopy), and ζ potential, while its antimicrobial effect was corroborated against oral Grampositive and Gram-negative microorganisms, as well as yeast that is commonly present in the oral cavity. The AgNPs showed absorption at 400–500 nm in the UV-Vis spectrum, had an average size of 4–16 nm as observed by the high-resolution transmission electron microscopy (HR-TEM), and were of a crystalline nature and quasi-spherical form. The antimicrobial susceptibility test showed inhibition zones of 2–4 mm in diameter. Our results suggest that AgNPs synthesized with clove can be used as effective growth inhibitors in several oral microorganisms.S/

    6-N-Trimethyllysine metabolism and carnitine biosynthesis in N. crassa

    Get PDF
    6-N-Trimethyllysine metabolism and carnitine biosynthesi

    Transfer of glycosyl-phosphatidylinositol membrane anchors to polypeptide acceptors in a cell-free system

    Get PDF
    Glycosylinositol phospholipid (GPI) membrane anchors are the sole means of membrane attachment of a large number of cell surface proteins, including the variant surface glycoproteins (VSGs) of the parasitic protozoan, Trypanosoma brucei. Biosynthetic data suggest that GPI-anchored proteins are synthesized with carboxy-terminal extensions that are immediately replaced by GPI, suggesting the existence of preformed GPI species available for transfer to the nascent protein in the ER. Candidate precursor glycolipids having a linear sequence indistinguishable from the conserved core structure found on all GPI anchors, have been characterized in T. brucei. In this paper we describe the transfer of three GPI variants to endogenous VSG in vitro. GPI addition is not reduced by inhibitors of protein synthesis and does not require ATP or GTP, consistent with a transpeptidation mechanism

    Production of a novel microbial transglutaminase using Streptomyces sp. polar strains

    Get PDF
    Abstract Several biotechnological aspects regarding the increase in transglutaminase biosynthesi

    Energy Metabolism and the Induction of the Unfolded Protein Response: A Dissertation

    Get PDF
    White adipose plays a major role in the regulation of whole body metabolism through the storage and hydrolysis of triglycerides and by secretion of adipokines. The function of endocrine cells is highly dependent on the unfolded protein response (UPR), a homeostatic signaling mechanism that balances the protein folding capacity of the endoplasmic reticulum (ER) with the cell\u27s secretory protein load. Here we demonstrate that the adipocyte UPR pathway is necessary for its secretory functions, and can thus play a crucial role in the control of whole body energy homeostasis. ER protein folding capacity is dependent both on the number of available chaperones as well as on their activity, which requires a sufficient ATP supply. In 3T3-L1 adipocytes, mitochondrial biogenesis occurred in parallel with induction of the UPR; therefore, we tested whether it was necessary for efficient ER function. Inhibition of mitochondrial ATP synthesis through depletion of Tfam, a mitochondrial transcription factor, or treatment with inhibitors of oxidative phosphorylation, demonstrate that ER function is sensitive to acute changes in adenine nucleotide levels. In addition, adenylate kinase 2 (AK2), which regulates mitochondrial adenine nucleotide interconversion, is markedly induced during adipocyte and B cell differentiation. AK2 depletion impairs induction of the UPR and secretion in both cell types. Interestingly, cytosolic adenylate kinase 1 (AK1) does not have the same effect upon UPR induction. We show that adenine nucleotides promote proper ER function and alterations in specific aspects of ATP synthesis can impair UPR signaling. Understanding the complex energetic regulation of the UPR may provide insight into the relationship between UPR and disease
    corecore