326 research outputs found

    Editorial: Green chemistry biocatalysis

    Get PDF
    Editorial on the Research Topic: Green chemistry biocatalysi

    Enzyme immobilisation on wood-derived cellulose scaffolds via carbohydrate-binding module fusion constructs

    Get PDF
    Enzyme-CBM fusion constructs immobilised on wood-derived cellulose scaffolds: a sustainable approach for continuous flow biocatalysi

    Biotransformation of phenolics with laccase containing bacterial spores

    Get PDF
    Treatment of effluents containing phenols such as textile dyes with fungal laccases is usually limited to the acid to neutral pH range and moderate temperatures. Here we demonstrate for the first time that spore-bound laccases which are stable at high temperatures and pH values can be used for phenolic dye decolorisation. Laccase containing spores from Bacillus SF were immobilized on alumina pellets. Both immobilized and free spores were able to completely decolorize the common textile dyes Mordant Black 9, Mordant Brown 96/Mordant Brown 15, and Acid Blue 74 within 90 min of incubation time and decolorized solutions were successfully used in re-dyeing. spores from Bacillus SF were immobilized on alumina pellets. Both immobilized and free spores were able to completely decolorize the common textile dyes Mordant Black 9, Mordant Brown 96/Mordant Brown 15, and Acid Blue 74 within 90 min of incubation time and decolorized solutions were successfully used in re-dyeing.European Project BIOEFFTEXCompetence Centre Applied Biocatalysi

    Using enzyme cascades in biocatalysis: Highlight on transaminases and carboxylic acid reductases

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recordBiocatalysis, the use of enzymes in chemical transformations, is an important green chemistry tool. Cascade reactions combine different enzyme activities in a sequential set of reactions. Cascades can occur within a living (usually bacterial) cell; in vitro in ‘one pot’ systems where the desired enzymes are mixed together to carry out the multi-enzyme reaction; or using microfluidic systems. Microfluidics offers particular advantages when the product of the reaction inhibits the enzyme(s). In vitro systems allow variation of different enzyme concentrations to optimise the metabolic ‘flux’, and the addition of enzyme cofactors as required. Cascades including cofactor recycling systems and modelling approaches are being developed to optimise cascades for wider industrial scale use. Two industrially important enzymes, transaminases and carboxylic acid reductases are used as examples regarding their applications in cascade reactions with other enzyme classes to obtain important synthons of pharmaceutical interest.Glaxosmithkline Research & Development LtdBiotechnology & Biological Sciences Research Council (BBSRC

    Kinetic Study of Peroxidase-Catalyzed Oxidation of 2-Hydroxyanthracene and 9-Phenanthrol in Presence of Biosurfactant Escin

    Get PDF
    The kinetics of fungal peroxidase-catalyzed 2-hydroxyanthracene and 9-phenanthrol oxidation was investigated in presence of biosurfactant escin at pH 5.5 and 25 °C. The kinetic measurements were performed using the fluorimetric method and the critical micelle concentration (CMC) of escin was determined using the dynamic light scattering technique. Inactivation of peroxidase was observed in absence of biosurfactant escin. It was shown that escin, used in concentrations lower than CMC, decreases or completely stops the peroxidase inactivation and increases the conversion of 2-hydroxyanthracene as well as of 9-phenanthrol. The environmentally friendly method of peroxidase-catalyzed 2-hydroxyanthracene and 9-phenanthrol oxidation in presence of biosurfactant Escin has an advantage over traditional decontamination methods due to their less environmental impact.This article belongs to the Section Biocatalysi

    Nanocatalysts Containing Direct Electron Transfer-Capable Oxidoreductases: Recent Advances and Applications

    Get PDF
    Direct electron transfer (DET)-capable oxidoreductases are enzymes that have the ability to transfer/receive electrons directly to/from solid surfaces or nanomaterials, bypassing the need for an additional electron mediator. More than 100 enzymes are known to be capable of working in DET conditions; however, to this day, DET-capable enzymes have been mainly used in designing biofuel cells and biosensors. The rapid advance in (semi) conductive nanomaterial development provided new possibilities to create enzyme-nanoparticle catalysts utilizing properties of DET-capable enzymes and demonstrating catalytic processes never observed before. Briefly, such nanocatalysts combine several cathodic and anodic catalysis performing oxidoreductases into a single nanoparticle surface. Hereby, to the best of our knowledge, we present the first review concerning such nanocatalytic systems involving DET-capable oxidoreductases. We outlook the contemporary applications of DET-capable enzymes, present a principle of operation of nanocatalysts based on DET-capable oxidoreductases, provide a review of state-of-the-art (nano) catalytic systems that have been demonstrated using DET-capable oxidoreductases, and highlight common strategies and challenges that are usually associated with those type catalytic systems. Finally, we end this paper with the concluding discussion, where we present future perspectives and possible research directions.This article belongs to the Special Issue State of the Art and Future Trends in Nanostructured Biocatalysi

    NASA Tech Briefs, February 1998

    Get PDF
    Topics: Test Tools; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Software; Mechanics; Machinery/Automation; Manufacturing/Fabrication; Life Sciences
    corecore