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Abstract: The kinetics of fungal peroxidase-catalyzed 2-hydroxyanthracene and 9-phenanthrol
oxidation was investigated in presence of biosurfactant escin at pH 5.5 and 25 ◦C. The kinetic
measurements were performed using the fluorimetric method and the critical micelle concentration
(CMC) of escin was determined using the dynamic light scattering technique. Inactivation of
peroxidase was observed in absence of biosurfactant escin. It was shown that escin, used in
concentrations lower than CMC, decreases or completely stops the peroxidase inactivation and
increases the conversion of 2-hydroxyanthracene as well as of 9-phenanthrol. The environmentally
friendly method of peroxidase-catalyzed 2-hydroxyanthracene and 9-phenanthrol oxidation in
presence of biosurfactant Escin has an advantage over traditional decontamination methods due to
their less environmental impact.
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1. Introduction

Aromatic hydroxyl derivatives (AHDs) are treated as pollutants that are produced and released
into the environment by various industrial processes, and effective methods of their decontamination
are very important [1,2]. Bio-utilization methods are usually not very expensive and environmentally
friendly. Pollutants can be degraded with the help of enzymes, synthesized by bacteria, fungi or
plants [3–5]. Peroxidases and other phenol-oxidizing enzymes have great potential to decrease
environmental pollution by bioremediation of waste water containing a broad spectrum of aromatic
hydroxyl derivatives [5]. Progress in genetic engineering also provides possibilities for application of
recombinant peroxidases that demonstrate an elevated stability compared with native peroxidases [6].

Peroxidases undergoes a cyclic reaction when reacting with AHDs. This sequence is summarized
in the following reactions [7]:

E + H2O2
k1
→ cpd I + H2O (1)

cpd I + AHD
k2
→ cpd II + AHD• (2)

cpd II + AHD
k3
→ E + AHD•+ H2O (3)

AHD•+ AHD•
k4
→ Olig (4)

Native peroxidase (E) is oxidized by hydrogen peroxide (H2O2) with compound I (cpd I) formation.
The cpd I in its turn oxidizes AHDs (AHD) via the formation of radical (AHD•) and compound II (cpd
II) (reactions 1–3). The resulting radicals can react chemically, forming oligomers (Olig, reaction 4)
that are subject to further oxidation by peroxidase to constitute higher polymers until the solubility
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limit is reached. Unfortunately, biocatalytic oxidation of AHDs has some limitation, i.e., inactivation of
enzymes during the reaction. It was proved that peroxidases and other phenol-oxidizing enzymes are
inactivated by the polymer product formed during the reaction due to formation of polymer-peroxidase
conjugates [8–10]. In an attempt to decrease the inhibition rate, some additives were used, i.e., non-ionic
polymeric compounds and surfactants [8,11,12]. Synthetic surfactants such as SDS, CTAB and Triton
X-100 are very poisonous to aquatic organisms, and they can influence the aquatic environment by
causing long-term adverse effects [13,14]. Recently, biosurfactants have received a lot of attention due
to biodegradability, low toxity and safety [15].

The task of this investigation was to explore recombinant Coprinus cinereus peroxidase-catalyzed
oxidation of 2-hydroxyanthracene and 9-phenanthrol in the presence of environmentally friendly
biosurfactant escin (Figure 1).
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Figure 1. Chemical structure of Escin [16].

2-hydroxyanthracene and 9-phenanthrol (also called 9-hydroxyphenanthrene) are tricyclic
aromatic hydrocarbons with hydroxyl group compounds, that being considered persistent,
bioaccumulative and toxic for freshwater and marine ecosystems [17,18]. Escin is the main natural
constituent of the saponin extract from the seeds of Aesculus hippocastanum (known also as the horse
chestnut tree) [19]. Horse chestnut seed extract, containing around 20 wt % escin, is widely used
in medicine for its venotonic effect, vascular protection and free radical scavenging properties [20].
The experiments of other scientists show that escin is obtained from crude extracts of aesculus plants
with high efficiency and it is not relatively expensive [21]; it is also sold as a market product.

2. Results and Discussion

2.1. Kinetics of Peroxidase-Catalyzed 2-Hydroxyanthracene and 9-Phenanthrol Oxidation in the Absence and
Presence of Biosurfactant Escin

The oxidations of 2-hydroxyanthracene and 9-phenanthrol were not complete in the absence
of biosurfactants (Figure 2a,b curves 1). During oxidation of these compounds, kinetic curves have
saturated. The fluorescence is not noticeable in enzymes, hydrogen peroxide and the products of the
reaction. So fluorescence intensity is minimized only due to 2-hydroxyanthracene or 9-phenanthrol
concentration decrease. The addition of a new portion of hydrogen peroxide did not affect the reaction.
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On the other hand, the addition of a new portion of enzyme has caused further 2-hydroxyanthracene
and 9-phenanthrol oxidation. This proves the peroxidase inactivation during the reaction. Other
curves on Figure 2a,b (curves 2–6) show the kinetics of peroxidase-catalyzed 2-hydroxyanthracene
(a) and 9-phenanthrol (b) oxidation in presence of biosurfactant escin. With small quantities (up to
1 µmol L−1) of biosurfactant, the conversion of both pollutants has risen up gradually. In presence of
2 µmol L−1–0.2 mmol L−1 concentration of escin the conversion of both substrates was fully completed,
so the enzyme inhibition was stopped. Also, escin (up to 0.2 mmol L−1) did not impact the initial
oxidation rate of both pollutants. When the concentration of escin exceeded 0.2 mmol L−1, the initial
rate of 2-hydroxyanthracene and 9-phenanthrol oxidation gradually decreased as well as the degree of
both AHDs’ conversion.
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Figure 2. Kinetics of peroxidase-catalyzed 2-hydroxyanthracene (a) and 9-phenanthrol (b) oxidation
in presence of Escin. The reaction mixture contained 25 µmol L−1 2-hydroxyanthracene (a) or
25 µmol L−1 9-phenanthrol (b), 1 nmol L−1 rCiP, 100 µmol L−1 H2O2, Escin: 0 µmol L−1 (1) 0.2 µmol L−1

(2) 0.5 µmol L−1 (3) 0.7 µmol L−1 (4) 1 µmol L−1 (5) 2 µmol L−1–0.2 mmol L−1 (6) in 50 mmol L−1 acetate
buffer pH 5.5, 25 ◦C. Curves marked by signs represent experimental data; solid curves were drawn
following a model (Reactions (1)–(6)).

2.2. Enhancing Effect of Escin Monomers on Biocatalytic Oxidation of 2-Hydroxyanthracene and 9-Phenanthrol

Escin is the amphiphilic molecule. At low concentration, it forms as monomers. At high
concentration, it may form a micelle. The concentration of the biosurfactant above which micelles are
formed is described as the critical micelle concentration (CMC, Figure 3).

The CMC of escin at 25 ◦C in 50 mmol L−1 sodium acetate buffer (pH 5.5) employing the dynamic
light scattering method was determined. Figure 3 presents the variation of the hydrodynamic diameter
with the escin concentration at 25 ◦C. It shows that the CMC of escin was 0.2 mmol L−1 in the sodium
acetate buffer. As shown in Figure 2, the conversion of 2-hydroxyanthracene and 9-phenanthrol was
high in the escin concentration range 2 µmol L−1–0.2 mmol L−1. Within this concentration range,
escin exists as a monomer. This shows that the monomer receives a better augmenting effect on the
conversion of 2-hydroxyanthracene and 9-phenanthrol than micelle.
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Figure 3. Dependence of hydrodynamic diameter on various concentrations of Escin prepared in
50 mmol L−1 acetate buffer solution pH 5.5, 25 ◦C with defined CMC. Vertical lines with cap indicate
error bars.

2.3. Mechanism of Escin Action

The saturation reaction rate during 2-hydroxyanthracene and 9-phenanthrol oxidation indicates
that enzyme is inhibited during the reaction (Figure 2a,b curves 1). The prevention of inhibition
by addition of biosurfactant escin indicates that the inhibition proceeds by enzyme interaction with
oxidation products. The results are accounted for by a scheme, which contains a stage of enzyme
inhibition by oligomers (Reactions (1)–(6)), using KinFitSim program. The second order constant of
hydrogen peroxide reaction with the native enzyme (Reaction (1)) was taken as k1 = 7.1× 106 mol−1 L s−1

at 25 ◦C [22]. The fitting of data gave constants of 2-hydroxyanthracene or 9-phenanthrol reactivity
with the ferryl compounds of rCiP (with compound I (k2) and with compound II (k3)), which were
similar at different biosurfactant concentrations (Table 1).

Table 1. Kinetic parameters of biocatalytic oxidation of 2-hydroxyanthracene and 9-phenanthrol in
presence of escin, when concentrations of biosurfactant are less than CMC, in 50 mmol L−1 acetate
buffer pH 5.5, 25 ◦C.

AHDs Escin, µmol L−1 k2, mol−1 L s−1 k3, mol−1 L s−1 kin, mol−1 L s−1

2-hydroxyanthracene 0 (1.0 ± 0.3) × 108 (1.0 ± 0.2) × 108 (2.2 ± 0.1) × 104

2-hydroxyanthracene 0.2 (1.0 ± 0.2) × 108 (1.0 ± 0.3) × 108 (9.5 ± 0.3) × 103

2-hydroxyanthracene 0.5 (1.0 ± 0.3) × 108 (1.0 ± 0.2) × 108 (5.3 ± 0.2) × 103

2-hydroxyanthracene 0.7 (9.2 ± 0.5) × 107 (9.0 ± 0.5) × 107 (4.2 ± 0.2) × 103

2-hydroxyanthracene 1 (9.0 ± 0.6) × 107 (9.5 ± 0.4) × 107 (1.6 ± 0.3) × 103

2-hydroxyanthracene 2 µmol L−1–0.2 mmol L−1 (1.0 ± 0.2) × 108 (1.0 ± 0.2) × 108 (9.0 ± 0.2) × 102

9-phenanthrol 0 (3.0 ± 0.1) × 107 (3.0 ± 0.1) × 107 (5.0 ± 0.2) × 104

9-phenanthrol 0.2 (3.0 ± 0.1) × 107 (3.1 ± 0.1) × 107 (3.3 ± 0.4) × 104

9-phenanthrol 0.5 (3.0 ± 0.1) × 107 (3.0 ± 0.1) × 107 (1.5 ± 0.3) × 104

9-phenanthrol 0.7 (3.2 ± 0.2) × 107 (3.3 ± 0.2) × 107 (7.4 ± 0.2) × 103

9-phenanthrol 1 (3.0 ± 0.1) × 107 (3.0 ± 0.2) × 107 (3.3 ± 0.1) × 103

9-phenanthrol 2 µmol L−1–0.2 mmol L−1 (3.1 ± 0.2) × 107 (3.0 ± 0.1) × 107 (1.5 ± 0.1) × 103

On the terms of 2-hydroxyanthracene, a mean value of k2 was (9.7 ± 0.4) × 107 mol−1 L s−1 and
k3 was (9.8 ± 0.3) × 107 mol−1 L s−1 if escin concentrations had varied between 0 and 0.2 mmol L−1

(Table 1). In the event of 9-phenanthrol, a mean value of k2 as well as k3 was (3.1 ± 0.1) × 107 mol−1 L s−1
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if escin concentrations had varied between 0 and 0.2 mmol L−1 (Table 1). The results show that k2 and
k3 values did not change at different biosurfactant concentrations for both derivatives. This means
that biosurfactant escin does not interact with peroxidase. The calculated inhibition constant kin

value has decreased for 2-hydroxyanthracene and 9-phenanthrol if biosurfactant escin concentration
was increased (Table 1). The decline of kin when biosurfactant concentration was increased could be
illustrated by reversible oligomeric aromatic hydroxyl derivatives oxidation products interaction with
biosurfactant escin.

Demonstration of the mechanism of peroxidase inactivation by the molecular clothing of active
center by oligomeric derivatives has been submitted previously [10]. Docking and molecular dynamics
computations have indicated that oligomeric AHDs have interacted with the enzyme better than the
substrates. Opposed to the substrate, the binding of oligomeric derivatives did not form effective
complexes, and closed the active center. With small quantities of biosurfactant (less than critical micelle
concentrations), the enzyme inhibition was prevented. This may be defined by the fact that monomers
of biosurfactant connect with oligomeric compounds, which show strict hydrophobicity [12] and
interact with biosurfactant’s monomers.

3. Materials and Methods

3.1. Materials

Recombinant peroxidase from fungus Coprinus cinereus (rCiP) was obtained from Novozymes
A/S (Denmark). 2-hydroxyanthracene was obtained from Santa Cruz Biotechnology (Canada)
and 9-phenanthrol was obtained from Sigma-Aldrich (USA). Hydrogen peroxide (30% H2O2) was
received from Polskie Odczynniki Chemiczne S.A. (Poland). Sodium acetate was purchased from
Chempur (Poland). Biosurfactant escin was received from AppliChem (Germany). The rCiP
and H2O2 solutions were prepared in deionized aqua and concentrations of these materials
were measured spectrophotometrically by using Nicolet evolution 300 spectrophotometer (Thermo
Electron Corporation, USA). For rCiP and H2O2, the extinction coefficients are λ max (H2O)/nm 405
(ε/dm3 mmol−1 cm−1 109) [22] and λ max (H2O)/nm 240 (ε/dm3 mol−1 cm−1 39.4) [23], respectively.
2-hydroxyanthracene and 9-phenanthrol were weighted and dissolved in methanol; the final
concentration of methanol in the solutions for kinetic measurements was 2% (v/v). The escin solutions
were dissolved in 50 mmol L−1 acetate buffer pH 5.5.

3.2. CMC Determination

The CMC of biosurfactants in 50 mmol L−1 sodium acetate buffer at pH 5.5 and 25 ± 0.1 ◦C was
determined by using a Zetasizer Nano-ZS analyzer (Malvern Instruments, UK). This gadget contains
a 4 mW He-Ne laser operating at a wavelength of 633 nm and an avalanche photodiode detector.
The scattered light is analyzed at an angle of 173◦ and optics arrangement maximizes the detection of
scattered light while maintaining signal quality. For dynamic light scattering measurements, buffer
solution was filtered (pore size = 200 nm). The escin concentration in the solutions was ranged to
0.2 mmol L−1 with an step of 0.02 mmol L−1 and up to 1 mmol L−1 with an step of 0.1 mmol L−1.
All prepared solutions were left to equilibrate for 15 to 20 min then they were analyzed.

3.3. Kinetic Analysis

The kinetic analysis was done by using a Aminco Bowman luminescence spectrometer (Thermo
Electron Corporation, USA). The fluorescence of 2-hydroxyanthracene was determined at 526 nm and
at excitation 333 nm. The fluorescence of 9-phenanthrol was determined at 470 nm and at excitation
340 nm. The kinetic analysis was done in 50 mmol L−1 sodium acetate buffer solution at pH 5.5
and 25 ◦C and the reaction mixture contained 25 µmol L−1 2-hydroxyanthracene or 9-phenanthrol,
0.3–1 nmol L−1 rCiP, 100 µmol L−1 H2O2, 0–1 mmol L−1 of escin. The reactions began when adding the
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enzyme solution. All the experiments were carried out 3 times. Out of 3 kinetic curves the best curve
was chosen and it was marked using signs in Figure 2.

3.4. Mathematical Calculations

The fluorescence 2-hydroxyanthracene and 9-phenanthrol was normalized to the initial
concentrations. Computer programs Grafit 7 and Mathcad 15 were employed for data processing.
The kinetics of the process were interpreted according to the Dunford scheme (reactions 1–4), adding
the steps 5 and 6 corresponding to the enzyme inhibition by oligomers [12]:

E + Olig
k5
→ Ein (5)

cpd I + Olig
k6
→ Ein (6)

According to the scheme (reactions 1–6), all the best kinetic curves (Figure 2) were fitted 3 times
and kinetic parameters (k2, k3, kin) were calculated 3 times also using the KinFitSim 2.1 program [24].
The fitting of data gave chi-square value (χ2). According to the best χ2 value, the solid lines were
marked in the Figure 2. The mean values of kinetic parameters and standard errors were marked in
Table 1.

4. Conclusions

The performed investigations of biocatalytic oxidation of 2-hydroxyanthracene and 9-phenanthrol
in presence of escin can be used for further intensification of peroxidase-catalysed biotechnological
processes that can be applied while developing environmentally friendly decontamination methods.
It was shown that the biosurfactant escin, used with concentrations lower than the CMC, decreased or
completely stopped the peroxidase inactivation and increased the conversion of 2-hydroxyanthracene
as well as of 9-phenanthrol. Environmentally friendly methods has an advantage over traditional
decontamination methods due to the lesser environmental impact.
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