99,453 research outputs found

    A comparison of bacterial growth inhibiting effects of six commercially available mouthrinses

    Get PDF
    In this study the bacterial growth inhibiting effects of six commercially available mouthrinses (Hibident® Prodent® Merocet® Listerine® Veadent® and Meridol® were determined. Hibident® was used as a positive control. Five strains were tested (Streptococcus mutans C67, Streptococcus sanguis CH3, Veillonella alcalescens V1, Lactobacillus acidophilus JP and Actinomyces viscosus C74), as representatives of the supragingival human microflora. The Maximal Inhibiting Dilution (MID) was measured in batch cultures for each product and strain. With respect to the positive control, Hibident® (containing 0.2 per cent chlorhexidine), the most effective product was Meridol® (containing 125 ppm aminefluoride 297 and 125 ppm stannous fluoride) followed by Merocet® (containing 0.05 per cent cetylpyridinium chloride), Veadent® (containing 0.03 per cent sanguinarine), Listerine® (containing phenolic compounds) and Prodent® (containing 0.5 per cent sodium fluoride). Although all products have been separately reported to yield a plaque reduction in vivo, this study provides a firm basis for a comparison between products, as they were all evaluated in a similar way.</p

    Bacterial growth in the cytosol: lessons from Listeria

    Get PDF

    Gradient microfluidics enables rapid bacterial growth inhibition testing

    Get PDF
    Bacterial growth inhibition tests have become a standard measure of the adverse effects of inhibitors for a wide range of applications, such as toxicity testing in the medical and environmental sciences. However, conventional well-plate formats for these tests are laborious and provide limited information (often being restricted to an end-point assay). In this study, we have developed a microfluidic system that enables fast quantification of the effect of an inhibitor on bacteria growth and survival, within a single experiment. This format offers a unique combination of advantages, including long-term continuous flow culture, generation of concentration gradients, and single cell morphology tracking. Using Escherichia coli and the inhibitor amoxicillin as one model system, we show excellent agreement between an on-chip single cell-based assay and conventional methods to obtain quantitative measures of antibiotic inhibition (for example, minimum inhibition concentration). Furthermore, we show that our methods can provide additional information, over and above that of the standard well-plate assay, including kinetic information on growth inhibition and measurements of bacterial morphological dynamics over a wide range of inhibitor concentrations. Finally, using a second model system, we show that this chip-based systems does not require the bacteria to be labeled and is well suited for the study of naturally occurring species. We illustrate this using Nitrosomonas europaea, an environmentally important bacteria, and show that the chip system can lead to a significant reduction in the period required for growth and inhibition measurements (&lt;4 days, compared to weeks in a culture flask)

    Individuality and slow dynamics in bacterial growth homeostasis

    Full text link
    Microbial growth and division are fundamental processes relevant to many areas of life science. Of particular interest are homeostasis mechanisms, which buffer growth and division from accumulating fluctuations over multiple cycles. These mechanisms operate within single cells, possibly extending over several division cycles. However, all experimental studies to date have relied on measurements pooled from many distinct cells. Here, we disentangle long-term measured traces of individual cells from one another, revealing subtle differences between temporal and pooled statistics. By analyzing correlations along up to hundreds of generations, we find that the parameter describing effective cell-size homeostasis strength varies significantly among cells. At the same time, we find an invariant cell size which acts as an attractor to all individual traces, albeit with different effective attractive forces. Despite the common attractor, each cell maintains a distinct average size over its finite lifetime with suppressed temporal fluctuations around it, and equilibration to the global average size is surprisingly slow (> 150 cell cycles). To demonstrate a possible source of variable homeostasis strength, we construct a mathematical model relying on intracellular interactions, which integrates measured properties of cell size with those of highly expressed proteins. Effective homeostasis strength is then influenced by interactions and by noise levels, and generally varies among cells. A predictable and measurable consequence of variable homeostasis strength appears as distinct oscillatory patterns in cell size and protein content over many generations. We discuss the implications of our results to understanding mechanisms controlling division in single cells and their characteristic timescalesComment: In press with PNAS. 50 pages, including supplementary informatio

    Incorporating prior knowledge improves detection of differences in bacterial growth rate

    Get PDF
    BACKGROUND: Robust statistical detection of differences in the bacterial growth rate can be challenging, particularly when dealing with small differences or noisy data. The Bayesian approach provides a consistent framework for inferring model parameters and comparing hypotheses. The method captures the full uncertainty of parameter values, whilst making effective use of prior knowledge about a given system to improve estimation. RESULTS: We demonstrated the application of Bayesian analysis to bacterial growth curve comparison. Following extensive testing of the method, the analysis was applied to the large dataset of bacterial responses which are freely available at the web-resource, ComBase. Detection was found to be improved by using prior knowledge from clusters of previously analysed experimental results at similar environmental conditions. A comparison was also made to a more traditional statistical testing method, the F-test, and Bayesian analysis was found to perform more conclusively and to be capable of attributing significance to more subtle differences in growth rate. CONCLUSIONS: We have demonstrated that by making use of existing experimental knowledge, it is possible to significantly improve detection of differences in bacterial growth rate

    A Comparative Analysis of Bacterial Growth with Earphone Use

    Get PDF
    Background: Recently the worldwide usage of earphones has increased especially among the school and college students who have a high rate of sharing among them. Alike airline headsets, headphones and stethoscope ear-pieces, ear phones can easily be a vector of potential pathogens, which can give rise to otitis externa. Purpose: To compare the bacterial growth of the external ear in association with earphone and assess the role of earphones as vector or microorganisms. Material and Methods: 50 voluntary male subjects (age 18-25 years) were chosen and divided into two groups, A and B, according to the use of earphones. Swabs were taken from their left ear and the left earpiece of the earphone. Samples were processed as recommended. Results: In group A, bacteria were found in 20 (80%) ear and 14 (56%) earphone swabs. In group B, bacteria were found in 23 (92%) ear and 17 (68%) earphone swabs. Group B showed heavy growth and a significant increase in the number of bacterial growths after frequent and constant use. Conclusion: Frequent and constant use of earphones increases the bacterial growth in the ear and sharing of earphones might be a potential vector of commensals. It is therefore, always better not to share or else to clean the earphones before sharin

    Effects of diamagnetic levitation on bacterial growth in liquid

    Get PDF
    Diamagnetic levitation is a technique that uses a strong, spatially-varying magnetic field to levitate diamagnetic materials, such as water and biological cells. This technique has the potential to simulate aspects of weightlessness, on the Earth. In common with all ground-based techniques to simulate weightlessness, however, there are effects introduced by diamagnetic levitation that are not present in space. Since there have been few studies that systematically investigate these differences, diamagnetic levitation is not yet being fully exploited. For the first time, we critically assess the effect of diamagnetic levitation on a bacterial culture in liquid. We used a superconducting magnet to levitate growing bacterial cultures for up to 18 hours, in a series of experiments to determine the effect of diamagnetic levitation on all phases of the bacterial growth cycle. We find that diamagnetic levitation increases the rate of population growth in a liquid culture. The speed of sedimentation of the bacterial cells to the bottom of the container is considerably reduced. Further experiments and microarray gene analysis show that the growth enhancement is due to greater oxygen availability in the magnetically levitated sample. We demonstrate that the magnetic field that levitates the cells also induces convective stirring in the liquid, an effect not present in microgravity. We present a simple theoretical model, showing how the paramagnetic force on dissolved oxygen can cause the liquid to become unstable to convection when the consumption of oxygen by the bacteria generates an oxygen concentration gradient. We propose that this convection enhances oxygen availability by transporting oxygen around the sample. Since convection is absent in space, these results are of significant importance and timeliness to researchers considering using diamagnetic levitation to explore weightless effects on living organisms and a broad range of other topics in the physical and life sciences

    Role of Proteome Physical Chemistry in Cell Behavior.

    Get PDF
    We review how major cell behaviors, such as bacterial growth laws, are derived from the physical chemistry of the cell's proteins. On one hand, cell actions depend on the individual biological functionalities of their many genes and proteins. On the other hand, the common physics among proteins can be as important as the unique biology that distinguishes them. For example, bacterial growth rates depend strongly on temperature. This dependence can be explained by the folding stabilities across a cell's proteome. Such modeling explains how thermophilic and mesophilic organisms differ, and how oxidative damage of highly charged proteins can lead to unfolding and aggregation in aging cells. Cells have characteristic time scales. For example, E. coli can duplicate as fast as 2-3 times per hour. These time scales can be explained by protein dynamics (the rates of synthesis and degradation, folding, and diffusional transport). It rationalizes how bacterial growth is slowed down by added salt. In the same way that the behaviors of inanimate materials can be expressed in terms of the statistical distributions of atoms and molecules, some cell behaviors can be expressed in terms of distributions of protein properties, giving insights into the microscopic basis of growth laws in simple cells

    Effects of low-level deuterium enrichment on bacterial growth

    Full text link
    Using very precise (up to 0.05%) measurements of the growth parameters for bacteria E. coli grown on minimal media, we aimed to determine the lowest deuterium concentration at which the adverse effects that are prominent at higher enrichments start to become noticeable. Such a threshold was found at 0.5% D, a surprisingly high value, while the ultralow deuterium concentrations (up to 0.25% D) showed signs of the opposite trend. Bacterial adaptation for 400 generations in isotopically different environment confirmed preference for ultralow (up to 0.25% D) enrichment. This effect appears to be similar to those described in sporadic but multiple earlier reports. Possible explanations include hormesis and isotopic resonance phenomena, with the latter explanation being favored.Comment: Accepted to PLoS One. Press embargo applie
    • …
    corecore