8,234 research outputs found

    A Tight Bound for Shortest Augmenting Paths on Trees

    Full text link
    The shortest augmenting path technique is one of the fundamental ideas used in maximum matching and maximum flow algorithms. Since being introduced by Edmonds and Karp in 1972, it has been widely applied in many different settings. Surprisingly, despite this extensive usage, it is still not well understood even in the simplest case: online bipartite matching problem on trees. In this problem a bipartite tree T=(WB,E)T=(W \uplus B, E) is being revealed online, i.e., in each round one vertex from BB with its incident edges arrives. It was conjectured by Chaudhuri et. al. [K. Chaudhuri, C. Daskalakis, R. D. Kleinberg, and H. Lin. Online bipartite perfect matching with augmentations. In INFOCOM 2009] that the total length of all shortest augmenting paths found is O(nlogn)O(n \log n). In this paper, we prove a tight O(nlogn)O(n \log n) upper bound for the total length of shortest augmenting paths for trees improving over O(nlog2n)O(n \log^2 n) bound [B. Bosek, D. Leniowski, P. Sankowski, and A. Zych. Shortest augmenting paths for online matchings on trees. In WAOA 2015].Comment: 22 pages, 10 figure

    Trees and Matchings

    Full text link
    In this article, Temperley's bijection between spanning trees of the square grid on the one hand, and perfect matchings (also known as dimer coverings) of the square grid on the other, is extended to the setting of general planar directed (and undirected) graphs, where edges carry nonnegative weights that induce a weighting on the set of spanning trees. We show that the weighted, directed spanning trees (often called arborescences) of any planar graph G can be put into a one-to-one weight-preserving correspondence with the perfect matchings of a related planar graph H. One special case of this result is a bijection between perfect matchings of the hexagonal honeycomb lattice and directed spanning trees of a triangular lattice. Another special case gives a correspondence between perfect matchings of the ``square-octagon'' lattice and directed weighted spanning trees on a directed weighted version of the cartesian lattice. In conjunction with results of Kenyon, our main theorem allows us to compute the measures of all cylinder events for random spanning trees on any (directed, weighted) planar graph. Conversely, in cases where the perfect matching model arises from a tree model, Wilson's algorithm allows us to quickly generate random samples of perfect matchings.Comment: 32 pages, 19 figures (minor revisions from version 1

    Packing Plane Perfect Matchings into a Point Set

    Full text link
    Given a set PP of nn points in the plane, where nn is even, we consider the following question: How many plane perfect matchings can be packed into PP? We prove that at least log2n2\lceil\log_2{n}\rceil-2 plane perfect matchings can be packed into any point set PP. For some special configurations of point sets, we give the exact answer. We also consider some extensions of this problem

    Disjoint compatibility graph of non-crossing matchings of points in convex position

    Get PDF
    Let X2kX_{2k} be a set of 2k2k labeled points in convex position in the plane. We consider geometric non-intersecting straight-line perfect matchings of X2kX_{2k}. Two such matchings, MM and MM', are disjoint compatible if they do not have common edges, and no edge of MM crosses an edge of MM'. Denote by DCMk\mathrm{DCM}_k the graph whose vertices correspond to such matchings, and two vertices are adjacent if and only if the corresponding matchings are disjoint compatible. We show that for each k9k \geq 9, the connected components of DCMk\mathrm{DCM}_k form exactly three isomorphism classes -- namely, there is a certain number of isomorphic small components, a certain number of isomorphic medium components, and one big component. The number and the structure of small and medium components is determined precisely.Comment: 46 pages, 30 figure

    The growth rate over trees of any family of set defined by a monadic second order formula is semi-computable

    Full text link
    Monadic second order logic can be used to express many classical notions of sets of vertices of a graph as for instance: dominating sets, induced matchings, perfect codes, independent sets or irredundant sets. Bounds on the number of sets of any such family of sets are interesting from a combinatorial point of view and have algorithmic applications. Many such bounds on different families of sets over different classes of graphs are already provided in the literature. In particular, Rote recently showed that the number of minimal dominating sets in trees of order nn is at most 95n1395^{\frac{n}{13}} and that this bound is asymptotically sharp up to a multiplicative constant. We build on his work to show that what he did for minimal dominating sets can be done for any family of sets definable by a monadic second order formula. We first show that, for any monadic second order formula over graphs that characterizes a given kind of subset of its vertices, the maximal number of such sets in a tree can be expressed as the \textit{growth rate of a bilinear system}. This mostly relies on well known links between monadic second order logic over trees and tree automata and basic tree automata manipulations. Then we show that this "growth rate" of a bilinear system can be approximated from above.We then use our implementation of this result to provide bounds on the number of independent dominating sets, total perfect dominating sets, induced matchings, maximal induced matchings, minimal perfect dominating sets, perfect codes and maximal irredundant sets on trees. We also solve a question from D. Y. Kang et al. regarding rr-matchings and improve a bound from G\'orska and Skupie\'n on the number of maximal matchings on trees. Remark that this approach is easily generalizable to graphs of bounded tree width or clique width (or any similar class of graphs where tree automata are meaningful)

    On Randomized Algorithms for Matching in the Online Preemptive Model

    Full text link
    We investigate the power of randomized algorithms for the maximum cardinality matching (MCM) and the maximum weight matching (MWM) problems in the online preemptive model. In this model, the edges of a graph are revealed one by one and the algorithm is required to always maintain a valid matching. On seeing an edge, the algorithm has to either accept or reject the edge. If accepted, then the adjacent edges are discarded. The complexity of the problem is settled for deterministic algorithms. Almost nothing is known for randomized algorithms. A lower bound of 1.6931.693 is known for MCM with a trivial upper bound of 22. An upper bound of 5.3565.356 is known for MWM. We initiate a systematic study of the same in this paper with an aim to isolate and understand the difficulty. We begin with a primal-dual analysis of the deterministic algorithm due to McGregor. All deterministic lower bounds are on instances which are trees at every step. For this class of (unweighted) graphs we present a randomized algorithm which is 2815\frac{28}{15}-competitive. The analysis is a considerable extension of the (simple) primal-dual analysis for the deterministic case. The key new technique is that the distribution of primal charge to dual variables depends on the "neighborhood" and needs to be done after having seen the entire input. The assignment is asymmetric: in that edges may assign different charges to the two end-points. Also the proof depends on a non-trivial structural statement on the performance of the algorithm on the input tree. The other main result of this paper is an extension of the deterministic lower bound of Varadaraja to a natural class of randomized algorithms which decide whether to accept a new edge or not using independent random choices
    corecore