46,435 research outputs found
Doubled patterns are -avoidable
In combinatorics on words, a word over an alphabet is said to
avoid a pattern over an alphabet if there is no factor of
such that where is a non-erasing morphism. A
pattern is said to be -avoidable if there exists an infinite word over a
-letter alphabet that avoids . A pattern is said to be doubled if no
variable occurs only once. Doubled patterns with at most 3 variables and
patterns with at least 6 variables are -avoidable. We show that doubled
patterns with 4 and 5 variables are also -avoidable
Binary Patterns in Binary Cube-Free Words: Avoidability and Growth
The avoidability of binary patterns by binary cube-free words is investigated
and the exact bound between unavoidable and avoidable patterns is found. All
avoidable patterns are shown to be D0L-avoidable. For avoidable patterns, the
growth rates of the avoiding languages are studied. All such languages, except
for the overlap-free language, are proved to have exponential growth. The exact
growth rates of languages avoiding minimal avoidable patterns are approximated
through computer-assisted upper bounds. Finally, a new example of a
pattern-avoiding language of polynomial growth is given.Comment: 18 pages, 2 tables; submitted to RAIRO TIA (Special issue of Mons
Days 2012
Avoidability of formulas with two variables
In combinatorics on words, a word over an alphabet is said to
avoid a pattern over an alphabet of variables if there is no
factor of such that where is a
non-erasing morphism. A pattern is said to be -avoidable if there exists
an infinite word over a -letter alphabet that avoids . We consider the
patterns such that at most two variables appear at least twice, or
equivalently, the formulas with at most two variables. For each such formula,
we determine whether it is -avoidable, and if it is -avoidable, we
determine whether it is avoided by exponentially many binary words
Every Binary Pattern of Length Greater Than 14 Is Abelian-2-Avoidable
We show that every binary pattern of length greater than 14 is abelian-2-avoidable. The best known upper bound on the length of abelian-2-unavoidable binary pattern was 118, and the best known lower bound is 7.
We designed an algorithm to decide, under some reasonable assumptions, if a morphic word avoids a pattern in the abelian sense. This algorithm is then used to show that some binary patterns are abelian-2-avoidable. We finally use this list of abelian-2-avoidable pattern to show our result. We also discuss the avoidability of binary patterns on 3 and 4 letters
Strict Bounds for Pattern Avoidance
Cassaigne conjectured in 1994 that any pattern with m distinct variables of length at least 3(2m-1) is avoidable over a binary alphabet, and any pattern with m distinct variables of length at least 2m is avoidable over a ternary alphabet. Building upon the work of Rampersad and the power series techniques of Bell and Goh, we obtain both of these suggested strict bounds. Similar bounds are also obtained for pattern avoidance in partial words, sequences where some characters are unknown
- …