46,435 research outputs found

    Doubled patterns are 33-avoidable

    Full text link
    In combinatorics on words, a word ww over an alphabet Σ\Sigma is said to avoid a pattern pp over an alphabet Δ\Delta if there is no factor ff of ww such that f=h(p)f=h(p) where h:Δ∗→Σ∗h:\Delta^*\to\Sigma^* is a non-erasing morphism. A pattern pp is said to be kk-avoidable if there exists an infinite word over a kk-letter alphabet that avoids pp. A pattern is said to be doubled if no variable occurs only once. Doubled patterns with at most 3 variables and patterns with at least 6 variables are 33-avoidable. We show that doubled patterns with 4 and 5 variables are also 33-avoidable

    Binary Patterns in Binary Cube-Free Words: Avoidability and Growth

    Get PDF
    The avoidability of binary patterns by binary cube-free words is investigated and the exact bound between unavoidable and avoidable patterns is found. All avoidable patterns are shown to be D0L-avoidable. For avoidable patterns, the growth rates of the avoiding languages are studied. All such languages, except for the overlap-free language, are proved to have exponential growth. The exact growth rates of languages avoiding minimal avoidable patterns are approximated through computer-assisted upper bounds. Finally, a new example of a pattern-avoiding language of polynomial growth is given.Comment: 18 pages, 2 tables; submitted to RAIRO TIA (Special issue of Mons Days 2012

    Avoidability of formulas with two variables

    Full text link
    In combinatorics on words, a word ww over an alphabet Σ\Sigma is said to avoid a pattern pp over an alphabet Δ\Delta of variables if there is no factor ff of ww such that f=h(p)f=h(p) where h:Δ∗→Σ∗h:\Delta^*\to\Sigma^* is a non-erasing morphism. A pattern pp is said to be kk-avoidable if there exists an infinite word over a kk-letter alphabet that avoids pp. We consider the patterns such that at most two variables appear at least twice, or equivalently, the formulas with at most two variables. For each such formula, we determine whether it is 22-avoidable, and if it is 22-avoidable, we determine whether it is avoided by exponentially many binary words

    Every Binary Pattern of Length Greater Than 14 Is Abelian-2-Avoidable

    Get PDF
    We show that every binary pattern of length greater than 14 is abelian-2-avoidable. The best known upper bound on the length of abelian-2-unavoidable binary pattern was 118, and the best known lower bound is 7. We designed an algorithm to decide, under some reasonable assumptions, if a morphic word avoids a pattern in the abelian sense. This algorithm is then used to show that some binary patterns are abelian-2-avoidable. We finally use this list of abelian-2-avoidable pattern to show our result. We also discuss the avoidability of binary patterns on 3 and 4 letters

    Strict Bounds for Pattern Avoidance

    Get PDF
    Cassaigne conjectured in 1994 that any pattern with m distinct variables of length at least 3(2m-1) is avoidable over a binary alphabet, and any pattern with m distinct variables of length at least 2m is avoidable over a ternary alphabet. Building upon the work of Rampersad and the power series techniques of Bell and Goh, we obtain both of these suggested strict bounds. Similar bounds are also obtained for pattern avoidance in partial words, sequences where some characters are unknown
    • …
    corecore