15 research outputs found

    Study on Canopy Structure, Whole Tree Carbon Supply and Demand in Papaya

    No full text
    番木瓜具有高產的潛能,但是全樹碳需求與供應模式尚未被建立。本研究首先探討於田間網室栽培下,番木瓜樹冠內光合作用能力與光度分布的輪廓,並以樹冠立體結構模型,說明葉片發育期間葉片角度的調整對樹冠內光線分布的影響。接著以自組氣體開放式果實光合作用測量系統,調查不同生育時期離體果實CO2氣體交換率,並計算出果實碳需求量及果實光合作用對果實碳需求的貢獻。最後,再以可移動式開放氣體交換系統量測2.5、4.5及6.5個月株齡番木瓜全樹光合作用,以瞭解番木瓜植株可供應的碳量。 番木瓜樹冠穿透係數值(extinction coefficient value, k)高達1.68,顯示位於樹冠上方的成熟葉間無明顯遮陰,但對下位葉造成顯著的遮陰效應。由於上方樹冠層葉面積指數(leaf area index, LAI)值0.3-1.4 m2 m-2 (約為樹冠總葉面積的46%)能夠維持較高的光合光通量密度(photosynthetic photon flux density, PPFD)及最大光合作用率(maximum net CO2 assimilation in saturated light, ACO2),因此建議一個理想的木瓜樹冠,於接近採收期間,必須設法讓LAI值0.3-1.4 m2 m-2 (大約為11 – 29 葉位)的成熟葉,擁有最大的PPFD以維持樹冠最大光合作用能力。 番木瓜連續葉序為符合黃金角度的基礎螺旋排列,番木瓜葉片發育期間,葉柄傾角(φP)則逐漸由幼葉的垂直角度(φP ≒ 90o)調整為下位葉的平面角度,葉柄與葉面的夾角隨著φP持續進行調整,使得葉面維持於平面狀態。可藉由φB之調整與葉柄伸長,將第21葉位(48天葉齡)以前成熟葉維持於上層樹冠層,並擁有最大的光合光通量密度。而利用葉片發育介量可繪製樹冠立體圖形,並準確地模擬樹冠光截取及分布量,試驗結果亦說明豐產番木瓜樹冠必須擁有高光截取效率與維持完整樹冠結構的特性。 番木瓜果實以單位鮮果重為基礎,番木瓜果實授粉後二週發育初期暗呼吸作用率(dark respiration rate, RD)、淨光合作用速率(net photosynthetic rate, RL)及果實總光合作用率(gross photosynthetic rate, PG)較高,隨著果齡增加,RD及RL分別於12周及6周果齡逐漸降至平緩,其中RL值接近0 μmol kg-1 hur-1。若以單粒果重為基礎,則RD、RL及PG隨著果實發育,呈逐漸增加的趨勢;以單位面積為基礎,PG於不同果齡間介於2-3 μmol m-2 s-1。田間果實氣體交換率日變化趨勢,於光飽和點以下RL隨著光強度增加而增加,夜間RD及果實水份損失則與溫度有關。 果實以單位乾重為基礎, CO2氣體交換率隨著溫度增加而升高,以25-35℃間增幅較大。果實CO2氣體交換率仍以幼果時期較高,隨著果實發育而逐漸下降。果實時期碳需求量包含果實碳累積量與呼吸損耗量,果實碳累積量於第10週果齡起迅速累積,於採收前維持約310 - 400 mg fruit-1 day-1C碳累積量。果實光合作用對果實碳需求貢獻量,若分別以25/15℃及35/25℃(日/夜溫)為條件,發育期間分別平均約貢獻15.4%及17.3%,果實光合作用於果實發育期間,有利於維持果實碳水化合物的需求。 番木瓜全樹光合作用日變化趨勢與光度有關,2.5個月株齡全日固定CO2量為1.6 molCO2 plant-1 day-1,4.5-6.5個月株齡介於4.1-4.7 molCO2 plant-1 day-1;全樹蒸散作用率受到季節溫度變化的影響變動較大,介於378.5-810.4及molH2O plant-1 day-1間。番木瓜全樹淨CO2交換率(net carbon dioxide exchange rate, NCER)與葉面積指數(Leaf area index, LAI)及樹冠幅的大小有關,因此,當樹冠幅達到最大後,較高的LAI並無法增加NCER。利用本研究所設計的全樹氣體交換量測系統,適用於評估番木瓜樹冠氣體交換特性,並有助於建立果實碳需求量的評估。Papaya has a tendency for high productivity. However, there is still unsatisfactory information on the carbon supply and demand of papaya trees. First, we accessed the photosynthetic capacity and light intensity profile within the developing canopy of field net-house-grown papaya trees. Second, to simulate the distribution of light intensity within the papaya canopy, we applied a simple statistical model for reconstructing three dimensional (3D) canopy structures and explained how adjustment of leaf inclination affects light intensity distribution within the developing canopy of papaya trees. Then, we designed an open-flow chamber system to measure papaya detached fruit CO2- and H2O-fluxes in developing stages and calculated the contribution of fruit photosynthesis to the carbon requirement of developing papaya fruits. Last, four flow-through chambers were built to measure gas exchange of whole papaya canopy at 2.5, 4.5 and 6.5 months after planting and to access the carbon supply of whole papaya tree. The observed high extinction coefficient value (1.68) for field net-house-grown papaya at a high solar elevation indicated that the mature leaves in the top layer did not cover each other in the upper strata but effectively shaded leaves in the lower strata. The mature leaves in the upper layer of the canopy with a LAI of 0.3-1.4 m2 m-2 (46% of the total leaf area of the canopy) were able to maintain high PPFD and ACO2. The study suggests that an ideal papaya canopy should be exposed to a LAI of 0.3-1.4 m2 m-2 (approximately the 11th – 29th leaf position) to acquire the maximum amount of PPFD and maintain photosynthetic capacity during mid-day measurements near harvest. The angular position of papaya leaves follows genetic spiral arrangements corresponding to the ''golden angle'' around the stem. The vertical petiole inclination angle (φP) with the newly leaf continually turned into horizontal with increasing leaf position. To maintain φB in horizontal situation with papaya mature leaves, the leaf angle between leaf blade and petiole could be gradually adjusted with φP. By progressively adjusting φB and elongating petiole length in the process of leaf development, the newly developed leaves were able to maintain the leaves within 21th leaf positions (leaf age 48 days) in the upper strata of papaya canopy and high photosynthetic photon flux density (PPFD). The parameter values obtained in this study were applied to draw three-dimension canopy architecture and accurately stimulated the PPFD distribution within the canopy. Our results imply that the high effective light interception with canopy and well-developed canopy architecture are the main requirement for a high productivity canopy of papaya. On a unit fresh weight basis, the dark respiration rate (RD), net photosynthetic rate ( RL) and gross photosynthetic rate (PG) were higher during the early developing stage of fruit growth. RD and RL decreased gradually until 12 weeks and six weeks fruit age, respectively. RL maintained in a stable level and close to 0 μmol kg-1 hur-1 until fruit maturity. On single fruit basis, fruit RD, RL and PG increased gradually with fruit weight. Furthermore, on a unit surface area basis, the value of PG was about 2-3 μmol m-2 s-1 in fruit developing stages. The daily RL trend of attached fruits followed the increase of irradiance under the light saturated point in the field experiment. The increasing in RD and net water loss of papaya fruits was related to the ambient temperature. On a unit dry weight basis, the net CO2 exchange rate was raised with the increasing temperature especially between 25-35 ℃. The net CO2 exchange rate was higher during the early developing stage of fruit growth and declined in maturing fruits. The carbon requirement of developing fruits included carbon accumulation and respiration loss of fruit development. Carbon requirement increased rapidly from 10 weeks after pollination and maintained in a stable level with 310 - 400 mg fruit-1 day-1C until fruit maturity. Photosynthesis of papaya fruit at 25/15℃and 35/25℃ (12/12 hurs and day/night temperature) provided 15.4% and 17.3%, respectively, of the total fruit carbon requirements during fruit development and maintained carbohydrate requirements during the growing season. Whole tree gas exchange closely tracked changes of solar radiation. Daily CO2 fixation rate was 1.6 molCO2 plant-1 day-1 at 2.5 month after planting and 4.1 to 4.7 molCO2 plant-1 day-1 between 4.5 and 6.5 month after planting. Vary temperature among seasons affected canopy transpiration rate, the daily rate was 378.5 to 810.4 mol H2O plant-1 day-1. In this study, we revealed that the whole tree net carbon dioxide exchange rate (NCER) with papaya depends on the relationship between the LAI and the diameter of canopy. Therefore, at high LAI, when the diameter reaches the largest canopy, further increases in leaf area (or LAI) would not lead to an increase in NCER. The gas exchange system presented here is a suitable design to assess the canopy gas exchange properties and estimate of carbon requirement for fruit development.圖目錄 iii 表目錄 vi 摘 要 vii 英文摘要 ix 緒 言 1 第0章 前人研究 8 第一章 葉齡及光度影響網室栽培番木瓜發展中樹冠氣體交換介量與光合作用 21 第二章 番木瓜葉片角度調整影響發展中樹冠內光分布-番木瓜樹冠3D結構模擬 62 第三章 開放式氣體交換系統量測番木瓜果實發育期間二氧化碳交換率 85 第四章 溫度影響發育中番木瓜果實光合作用對碳需求貢獻 111 第五章 以可移動式開放氣體交換系統量測不同株齡番木瓜全樹光合作用之研究.... 133 第六章 綜合討論及結論 15

    The Health Management in Papaya (Carica papaya Linnaeus)

    No full text
    番木瓜苗定植於涼爽的秋季並盛產於隔年夏季,為目前主要的栽培模式。然而,於夏季盛產容易衍生病蟲害及生理問題,造成嚴重的損失與產銷失衡,並造成藥劑過度使用,增加食用風險。為減少病蟲害管理問題、提升作物安全、降低成本與穩定收益,高雄場透過綜合管理技術以達成目標。首先藉由改善番木瓜苗土壤覆蓋資材,設法將番木瓜苗移至近夏時期定植,以調整番木瓜盛產季,避開雨季以減少病蟲害。栽培期間的病蟲害管理,則藉由彙整登記用藥之藥單,提供農友用藥依據,並減少用藥種類;運用非農藥資材、澈底清園、少量關鍵性農藥之綜合防治方法等策略,以提高用藥之安全性並降低成本。肥培管理則利用對環境友善方式,以草生栽培增加土壤有機質含量,減少化學肥料施用,並配合定期土壤肥力檢測,了解土壤肥力變動情形,適時補充肥力之不足。最後,本場透過推廣教育及示範觀摩活動將健康管理策略加以推廣。 So far, the major cultivation mode for Carica papaya L. is planting in cool autumn and abounding in the next summer. However, diseases, pests, and physiological problems are easy to occur in the abounding season, causing severe damage and imbalance between production and marketing, and the excessive use of pesticides can also result in eating risk. To solve diseases and pests managing problems, promote safety of crops, decrease cost, and stabilize revenue, Kaohsiung District Agricultural Research and Extension Station approaches the goal by integrated management technique. Initially, try to plant the seedlings near summer to avoid abounding in raining season and decrease diseases and pests by modifying the soil-covering materials. During cultivation period, provide list of registered pesticides as a basis for farmers to choose from, hoping to reduce the kinds of pesticides used. Also, promote the safety of using pesticides and decrease cost by strategies such as applying non-pesticide materials, cleaning up the orchard completely, and using small amount of key pesticides. On the other hand, the management of manuring is environmental friendly, for example, increasing the organic matter in the soil by grass cultivation, reducing the use of chemical fertilizer, and combining regular soil fertility examination to understand the change in soil fertility for nutrition supplement. Finally, we popularize health management strategies through extension education and field demonstration

    〈一般演題抄録〉17.高齢者における冠動脈バイパス術の検討

    No full text
    本文データはCiNiiから複製したものである。Articleapplication/pdfarticl

    〈症例〉小児の気管・気管支異物症例の麻酔

    Get PDF
    [抄録] 小児の気管・気管支異物の麻酔管理では,熟練した摘出手技とともに,低酸素血症を避けるために緻密な麻酔管理が必要である.今回,2001年1月から2004年6月までの間に当院で行われた小児の気管・気管支異物症例を対象として,麻酔管理上の問題点について検討したので報告する.症例は8例で年齢は10ケ月~10歳,男女比は3:5であった.術前CRPの上昇を認めたものは3例,X線異常は3例,症状として喘鳴を呈していたものが5例,時間的経過では2日以内の発症は4例,1ケ月以上経過していたものが1例であった.気道確保は7例で気管挿管を行い,筋弛緩薬を用いての調節呼吸で,1例はラリンジアルマスクを挿入し自発呼吸下で摘出術を施行した.麻酔は酸素,空気と揮発性麻酔薬のセボフルランの吸入と麻薬性鎮痛薬であるフェンタニルを随時静脈内投与して維持した.異物はピーナツが4例,魚骨が2例,さくらんぼの枝が1例,歯冠が1例であった.軟性の気管支ファイバースコープ(BF)を全例に用い,鉗子口から最適な鉗子を選択使用した.操作中はSpO_2,呼気終末CO_2を見ながら,手術操作の中断と続行を術者と協力しながら繰り返し適正換気に努めた.摘出後は気管支洗浄を行い,再度BFで気道内を確認後に気管チューブを抜去した.術後は全例問題なく経過した.小児の気管・気管支異物の摘出術では,異物が小さくて摘出が困難なことから熟練性が必要であるとともに,麻酔管理では術中の低換気から低酸素血症の発生に対する注意が大切である.本文データはCiNiiから複製したものである。application/pdfdepartmental bulletin pape

    〈一般演題抄録〉17.高齢者における冠動脈バイパス術の検討

    No full text
    本文データはCiNiiから複製したものである。Articleapplication/pd
    corecore