465 research outputs found

    Two stories

    Get PDF
    These stories are about the Imagination. They seek not so much to explain as to chart its excursion from whatever unknown recess of the soul it emerges to its refashioning of those forms of life it encounters. The first story, "De Profundis," has to do with the awakening of the imaginative faculty; the second, "A Nice Little Story," concerns the imagination's tapping of its own mysterious existence

    Gender differences in the n

    Get PDF

    Novel ketone diet enhances physical and cognitive performance.

    Get PDF
    Ketone bodies are the most energy-efficient fuel and yield more ATP per mole of substrate than pyruvate and increase the free energy released from ATP hydrolysis. Elevation of circulating ketones via high-fat, low-carbohydrate diets has been used for the treatment of drug-refractory epilepsy and for neurodegenerative diseases, such as Parkinson's disease. Ketones may also be beneficial for muscle and brain in times of stress, such as endurance exercise. The challenge has been to raise circulating ketone levels by using a palatable diet without altering lipid levels. We found that blood ketone levels can be increased and cholesterol and triglycerides decreased by feeding rats a novel ketone ester diet: chow that is supplemented with (R)-3-hydroxybutyl (R)-3-hydroxybutyrate as 30% of calories. For 5 d, rats on the ketone diet ran 32% further on a treadmill than did control rats that ate an isocaloric diet that was supplemented with either corn starch or palm oil (P < 0.05). Ketone-fed rats completed an 8-arm radial maze test 38% faster than did those on the other diets, making more correct decisions before making a mistake (P < 0.05). Isolated, perfused hearts from rats that were fed the ketone diet had greater free energy available from ATP hydrolysis during increased work than did hearts from rats on the other diets as shown by using [31P]-NMR spectroscopy. The novel ketone diet, therefore, improved physical performance and cognitive function in rats, and its energy-sparing properties suggest that it may help to treat a range of human conditions with metabolic abnormalities.-Murray, A. J., Knight, N. S., Cole, M. A., Cochlin, L. E., Carter, E., Tchabanenko, K., Pichulik, T., Gulston, M. K., Atherton, H. J., Schroeder, M. A., Deacon, R. M. J., Kashiwaya, Y., King, M. T., Pawlosky, R., Rawlins, J. N. P., Tyler, D. J., Griffin, J. L., Robertson, J., Veech, R. L., Clarke, K. Novel ketone diet enhances physical and cognitive performance.A.J.M. thanks the Research Councils UK for supporting his Academic Fellowship. This work was supported by the Defense Advanced Research Projects Agency.This is the final version of the article. It first appeared from FASEB at https://doi.org/10.1096/fj.201600773R

    Elongase Reactions as Control Points in Long-Chain Polyunsaturated Fatty Acid Synthesis

    Get PDF
    Extent: 9p.Background: Δ6-Desaturase (Fads2) is widely regarded as rate-limiting in the conversion of dietary α-linolenic acid (18:3n-3; ALA) to the long-chain omega-3 polyunsaturated fatty acid docosahexaenoic acid (22:6n-3; DHA). However, increasing dietary ALA or the direct Fads2 product, stearidonic acid (18:4n-3; SDA), increases tissue levels of eicosapentaenoic acid (20:5n-3; EPA) and docosapentaenoic acid (22:5n-3; DPA), but not DHA. These observations suggest that one or more control points must exist beyond ALA metabolism by Fads2. One possible control point is a second reaction involving Fads2 itself, since this enzyme catalyses desaturation of 24:5n-3 to 24:6n-3, as well as ALA to SDA. However, metabolism of EPA and DPA both require elongation reactions. This study examined the activities of two elongase enzymes as well as the second reaction of Fads2 in order to concentrate on the metabolism of EPA to DHA. Methodology/Principal Findings: The substrate selectivities, competitive substrate interactions and dose response curves of the rat elongases, Elovl2 and Elovl5 were determined after expression of the enzymes in yeast. The competitive substrate interactions for rat Fads2 were also examined. Rat Elovl2 was active with C20 and C22 polyunsaturated fatty acids and this single enzyme catalysed the sequential elongation reactions of EPA→DPA→24:5n-3. The second reaction DPA→24:5n-3 appeared to be saturated at substrate concentrations not saturating for the first reaction EPA→DPA. ALA dose-dependently inhibited Fads2 conversion of 24:5n-3 to 24:6n-3. Conclusions: The competition between ALA and 24:5n-3 for Fads2 may explain the decrease in DHA levels observed after certain intakes of dietary ALA have been exceeded. In addition, the apparent saturation of the second Elovl2 reaction, DPA→24:5n-3, provides further explanations for the accumulation of DPA when ALA, SDA or EPA is provided in the diet. This study suggests that Elovl2 will be critical in understanding if DHA synthesis can be increased by dietary means.Melissa K. Gregory, Robert A. Gibson, Rebecca J. Cook-Johnson, Leslie G. Cleland and Michael J. Jame

    Fatty acid metabolism in marine fish: Low activity of fatty acyl Δ5 desaturation in gilthead sea bream ( Sparus aurata ) cells

    Get PDF
    Marine fish are known to have an absolute dietary requirement for C20 and C22 highly unsaturated fatty acids. Previous studies using cultured cell lines indicated that underlying this requirement in marine fish was either a deficiency in fatty acyl Δ5 desaturase or C18-20 elongase activity. Recently, Ghioni et al. (Biochim. Biophys. Acta, 1437, 170-181, 1999) presented evidence that in turbot cells there was low activity of C18-20 elongase whereas Δ5 desaturase had high activity. In the present study, the fatty acid desaturase/elongase pathway was investigated in a cell line (SAF-1) from another carnivorous marine fish, sea bream. The metabolic conversions of a range of radiolabelled polyunsaturated fatty acids that comprised the direct substrates for Δ6 desaturase ([1-14C]18:2n-6 and [1-14C]18:3n-3), C18-20 elongase ([U-14C]18:4n-3), Δ5 desaturase ([1-14C]20:3n-6 and [U-14C]20:4n-3) and C20-22 elongase ([1-14C]20:4n-6 and [1-14C]20:5n-3) were utilized. The results showed that fatty acyl Δ6 desaturase in SAF-1 cells was highly active and there was substantial C18-20 elongase and C20-22 elongase activities. A deficiency in the desaturation/elongation pathway was clearly identified at the level of the fatty acyl Δ5 desaturase which was very low, particularly with 20:4n-3 as substrate. In comparison, the apparent activities of Δ6 desaturase, C18-20 elongase and C20-22 elongase were approximately 94-fold, 27-fold and 16-fold greater than that for Δ5 desaturase towards their respective n-3 polyunsaturated fatty acid substrates. The evidence obtained in the SAF-1 cell line is consistent with the dietary requirement for C20 and C22 highly unsaturated fatty acids in the marine fish, the sea bream, being primarily due to a deficiency in fatty acid Δ5 desaturase activity

    1H-NMR-Based Metabolomic Profiling of CSF in Early Amyotrophic Lateral Sclerosis

    Get PDF
    Background: Pathophysiological mechanisms involved in amyotrophic lateral sclerosis (ALS) are complex and none has identified reliable markers useful in routine patient evaluation. The aim of this study was to analyze the CSF of patients with ALS by 1 H NMR (Nuclear Magnetic Resonance) spectroscopy in order to identify biomarkers in the early stages of the disease, and to evaluate the biochemical factors involved in ALS. Methodology: CSF samples were collected from patients with ALS at the time of diagnosis and from patients without neurodegenerative diseases. One and two-dimensional 1 H NMR analyses were performed and metabolites were quantified by the ERETIC method. We compared the concentrations of CSF metabolites between both groups. Finally, we performed principal component (PCA) and discriminant analyses. Principal Findings: Fifty CSF samples from ALS patients and 44 from controls were analyzed. We quantified 17 metabolites including amino-acids, organic acids, and ketone bodies. Quantitative analysis revealed significantly lower acetate concentrations (p = 0.0002) in ALS patients compared to controls. Concentration of acetone trended higher (p = 0.015), and those of pyruvate (p = 0.002) and ascorbate (p = 0.003) were higher in the ALS group. PCA demonstrated that the pattern of analyzed metabolites discriminated between groups. Discriminant analysis using an algorithm of 17 metabolites reveale

    The influence of long chain polyunsaturate supplementation on docosahexaenoic acid and arachidonic acid in baboon neonate central nervous system

    Get PDF
    BACKGROUND: Docosahexaenoic acid (DHA) and arachidonic acid (ARA) are major components of the cerebral cortex and visual system, where they play a critical role in neural development. We quantitatively mapped fatty acids in 26 regions of the four-week-old breastfed baboon CNS, and studied the influence of dietary DHA and ARA supplementation and prematurity on CNS DHA and ARA concentrations. METHODS: Baboons were randomized into a breastfed (B) and four formula-fed groups: term, no DHA/ARA (T-); term, DHA/ARA supplemented (T+); preterm, no DHA/ARA (P-); preterm and DHA/ARA supplemented (P+). At four weeks adjusted age, brains were dissected and total fatty acids analyzed by gas chromatography and mass spectrometry. RESULTS: DHA and ARA are rich in many more structures than previously reported. They are most concentrated in structures local to the brain stem and diencephalon, particularly the basal ganglia, limbic regions, thalamus and midbrain, and comparatively lower in white matter. Dietary supplementation increased DHA in all structures but had little influence on ARA concentrations. Supplementation restored DHA concentrations to levels of breastfed neonates in all regions except the cerebral cortex and cerebellum. Prematurity per se did not exert a strong influence on DHA or ARA concentrations. CONCLUSION: 1) DHA and ARA are found in high concentration throughout the primate CNS, particularly in gray matter such as basal ganglia; 2) DHA concentrations drop across most CNS structures in neonates consuming formulas with no DHA, but ARA levels are relatively immune to ARA in the diet; 3) supplementation of infant formula is effective at restoring DHA concentration in structures other than the cerebral cortex. These results will be useful as a guide to future investigations of CNS function in the absence of dietary DHA and ARA
    • …
    corecore