1,705 research outputs found

    Tactile spatial attention enhances gamma-band activity in somatosensory cortex and reduces low-frequency activity in parieto-occipital areas.

    Get PDF
    We investigated the effects of spatial-selective attention on oscillatory neuronal dynamics in a tactile delayed-match-to-sample task. Whole-head magnetoencephalography was recorded in healthy subjects while dot patterns were presented to their index fingers using Braille stimulators. The subjects’ task was to report the reoccurrence of an initially presented sample pattern in a series of up to eight test stimuli that were presented unpredictably to their right or left index finger. Attention was cued to one side (finger) at the beginning of each trial, and subjects performed the task at the attended side, ignoring the unattended side. After stimulation, high-frequency gamma-band activity (60 –95 Hz) in presumed primary somatosensory cortex (S1) was enhanced, whereas alpha- and beta-band activity were suppressed in somatosensory and occipital areas and then rebounded. Interestingly, despite the absence of any visual stimulation, we also found time-locked activation of medial occipital, presumably visual, cortex. Most relevant, spatial tactile attention enhanced stimulus-induced gamma-band activity in brain regions consistent with contralateral S1 and deepened and prolonged the stimulus induced suppression of beta- and alpha-band activity, maximal in parieto-occipital cortex. Additionally, the beta rebound over contralateral sensorimotor areas was suppressed. Wehypothesize that spatial-selective attention enhances the saliency of sensory representations by synchronizing neuronal responses in early somatosensory cortex and thereby enhancing their impact on downstream areas and facilitating interareal processing. Furthermore, processing of tactile patterns also seems to recruit visual cortex and this even more so for attended compared with unattended stimuli

    Are alpha and beta oscillations spatially dissociated over the cortex in context‐driven spoken‐word production?

    Get PDF
    Decreases in oscillatory alpha- and beta-band power have been consistently found in spoken-word production. These have been linked to both motor preparation and conceptual-lexical retrieval processes. However, the observed power decreases have a broad frequency range that spans two “classic” (sensorimotor) bands: alpha and beta. It remains unclear whether alpha- and beta-band power decreases contribute independently when a spoken word is planned. Using a re-analysis of existing magnetoencephalography data, we probed whether the effects in alpha and beta bands are spatially distinct. Participants read a sentence that was either constraining or non-constraining toward the final word, which was presented as a picture. In separate blocks participants had to name the picture or score its predictability via button press. Irregular-resampling auto-spectral analysis (IRASA) was used to isolate the oscillatory activity in the alpha and beta bands from the background 1-over-f spectrum. The sources of alpha- and beta-band oscillations were localized based on the participants’ individualized peak frequencies. For both tasks, alpha- and beta-power decreases overlapped in left posterior temporal and inferior parietal cortex, regions that have previously been associated with conceptual and lexical processes. The spatial distributions of the alpha and beta power effects were spatially similar in these regions to the extent we could assess it. By contrast, for left frontal regions, the spatial distributions differed between alpha and beta effects. Our results suggest that for conceptual-lexical retrieval, alpha and beta oscillations do not dissociate spatially and, thus, are distinct from the classical sensorimotor alpha and beta oscillations

    BIDScoin: A User-Friendly Application to Convert Source Data to Brain Imaging Data Structure

    Get PDF
    Published: 13 January 2022Analyses of brain function and anatomy using shared neuroimaging data is an important development, and have acquired the potential to be scaled up with the specification of a new Brain Imaging Data Structure (BIDS) standard. To date, a variety of software tools help researchers in converting their source data to BIDS but often require programming skills or are tailored to specific institutes, data sets, or data formats. In this paper, we introduce BIDScoin, a cross-platform, flexible, and user-friendly converter that provides a graphical user interface (GUI) to help users finding their way in BIDS standard. BIDScoin does not require programming skills to be set up and used and supports plugins to extend their functionality. In this paper, we show its design and demonstrate how it can be applied to a downloadable tutorial data set. BIDScoin is distributed as free and open-source software to foster the community-driven effort to promote and facilitate the use of BIDS standard.We would like to thank Rutger van Deelen for providing the initial (PyQt) setup and implementation of the bidseditor application and Yorguin JosĂŠ Mantilla Ramos for the useful architectural feedback and for the initial code of the sova2coin EEG/MEG plugin. We are also grateful for all the feedback, questions, and contributions that users have submitted on GitHub

    The time course of language production as revealed by pattern classification of MEG sensor data

    Get PDF
    Language production involves a complex set of computations, from conceptualization to articulation, which are thought to engage cascading neural events in the language network. However, recent neuromagnetic evidence suggests simultaneous meaning-to-speech mapping in picture naming tasks, as indexed by early parallel activation of frontotemporal regions to lexical semantic, phonological, and articulatory information. Here we investigate the time course of word production, asking to what extent such “earliness” is a distinctive property of the associated spatiotemporal dynamics. Using MEG, we recorded the neural signals of 34 human subjects (26 males) overtly naming 134 images from four semantic object categories (animals, foods, tools, clothes). Within each category, we covaried word length, as quantified by the number of syllables contained in a word, and phonological neighborhood density to target lexical and post-lexical phonological/phonetic processes. Multivariate pattern analyses searchlights in sensor space distinguished the stimulus-locked spatiotemporal responses to object categories early on, from 150 to 250 ms after picture onset, whereas word length was decoded in left frontotemporal sensors at 250-350 ms, followed by the latency of phonological neighborhood density (350-450 ms). Our results suggest a progression of neural activity from posterior to anterior language regions for the semantic and phonological/phonetic computations preparing overt speech, thus supporting serial cascading models of word productio

    FieldTrip Made Easy: An Analysis Protocol for Group Analysis of the Auditory Steady State Brain Response in Time, Frequency, and Space

    Get PDF
    The auditory steady state evoked response (ASSR) is a robust and frequently utilized phenomenon in psychophysiological research. It reflects the auditory cortical response to an amplitude-modulated constant carrier frequency signal. The present report provides a concrete example of a group analysis of the EEG data from 29 healthy human participants, recorded during an ASSR paradigm, using the FieldTrip toolbox. First, we demonstrate sensor-level analysis in the time domain, allowing for a description of the event-related potentials (ERPs), as well as their statistical evaluation. Second, frequency analysis is applied to describe the spectral characteristics of the ASSR, followed by group level statistical analysis in the frequency domain. Third, we show how time- and frequency-domain analysis approaches can be combined in order to describe the temporal and spectral development of the ASSR. Finally, we demonstrate source reconstruction techniques to characterize the primary neural generators of the ASSR. Throughout, we pay special attention to explaining the design of the analysis pipeline for single subjects and for the group level analysis. The pipeline presented here can be adjusted to accommodate other experimental paradigms and may serve as a template for similar analyses

    Motor-cortical beta oscillations are modulated by correctness of observed action

    Get PDF
    Contains fulltext : 73550.pdf (Publisher’s version ) (Closed access)How humans understand the intention of others’ actions remains controversial. Some authors have suggested that intentions are recognized by means of a motor simulation of the observed action with the mirror-neuron system [1–3]. Others emphasize that intention recognition is an inferential process, often called ‘‘mentalizing’’ or employing a ‘‘theory of mind,’’ which activates areas well outside the motor system [4–6]. Here, we assessed the contribution of brain regions involved in motor simulation and mentalizing for understanding action intentions via functional brain imaging. Results show that the inferior frontal gyrus (part of the mirror-neuron system) processes the intentionality of an observed action on the basis of the visual properties of the action, irrespective of whether the subject paid attention to the intention or not. Conversely, brain areas that are part of a ‘‘mentalizing’’ network become active when subjects reflect about the intentionality of an observed action, but they are largely insensitive to the visual properties of the observed action. This supports the hypothesis that motor simulation and mentalizing have distinct but complementary functions for the recognition of others’ intentions
    • …
    corecore