313 research outputs found

    ENCE 5723

    Get PDF

    ENCE 5723

    Get PDF

    ENCE 4723

    Get PDF

    Analysis of intercomponent energy transfer in the interaction of oscillating-grid turbulence with an impermeable boundary

    Get PDF
    New experimental results are presented that investigate the nature of the intercomponent energy transfer that occurs in the interaction between oscillating-grid turbulence and a solid impermeable boundary, using instantaneous velocity measurements obtained from two-dimensional particle imaging velocimetry (PIV). Estimates of the pressure-strain correlation term of the transport equation of the Reynolds stress tensor, which represents intercomponent energy transfer, are obtained using the PIV data from a balance of the remaining terms of the transport equation. The influence of the pressure-strain correlation term on the flow is examined by computing the energy spectra and conditional turbulent statistics associated with events in which intercomponent energy transfer is thought to be concentrated. Data reported here is in support of viscous and `return-to-isotropy' mechanisms governing the intercomponent energy transfer previously proposed, respectively, by Perot & Moin [B. Perot and P. Moin, J. Fluid Mech., 295, 199-227 (1995).] and Walker et al. [D. T. Walker, R. I. Leighton and L. O. Garza-Rios, J. Fluid Mech., 320, 19-51 (1996)]. However, the data reported also indicate the presence of a weak net intercomponent energy transfer from the boundary-normal velocity component to the boundary-tangential velocity components over a thin region outside the viscous sublayer which is not captured within existing models of intercomponent energy transfer at the boundary

    Requirement of a Phage-Induced 5'-Exonuclease for the Expression of Late Genes of Bacteriophage T5

    Full text link

    Experimental study of oscillating-grid turbulence interacting with a solid boundary

    Get PDF
    © 2017 Cambridge University Press. The interaction between oscillating-grid turbulence and a solid, impermeable boundary (positioned below, and aligned parallel to, the grid) is studied experimentally. Instantaneous velocity measurements, obtained using two-dimensional particle imaging velocimetry in the vertical plane through the centre of the (horizontal) grid, are used to study the effect of the boundary on the root-mean-square velocity components, the vertical flux of turbulent kinetic energy (TKE) and the terms in the Reynolds stress transport equation. Identified as a critical aspect of the interaction is the blocking of a vertical flux of TKE across the boundary-affected region. Terms of the Reynolds stress transport equations show that the blocking of this energy flux acts to increase the boundary-tangential turbulent velocity component, relative to the far-field trend, but not the boundary-normal velocity component. The results are compared with previous studies of the interaction between zero-mean-shear turbulence and a solid boundary. In particular, the data reported here are in support of viscous and 'return-to-isotropy' mechanisms governing the intercomponent energy transfer previously proposed, respectively, by Perot and Moin (J. Fluid Mech., vol. 295, 1995, pp. 199-227) and Walker et al. (J. Fluid Mech., vol. 320, 1996, pp. 19-51), although we note that these mechanisms are not independent of the blocking of energy flux and draw parallels to the related model proposed by Magnaudet (J. Fluid Mech., vol. 484, 2003, pp. 167-196)

    Treatment Shaft for Combined Sewer Overflow Detention

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/147195/1/wer0434.pd

    Spatial Distribution of Petroleum Hydrocarbons in Sediment Cores from Blind Pass, St. Pete Beach, Florida

    Get PDF
    One hundred and one sediment cores were collected to characterize the spatial distribution of petroleum hydrocarbons within and just outside Blind Pass, St. Pete Beach, Florida. Twenty-five percent of the cores exhibited levels of petroleum hydrocarbons above detection limits of the gas chromatograph/flame ionization detector (GC/FID) (0.01 mg/Kg), but at generally low concentrations. Petroleum hydrocarbon speciation studies of these samples (gas chromatography/mass spectroscopy [GC/MS]) indicate above-detection level (1 μg/Kg) petroleum hydrocarbons are similar to the non-volatile petroleum hydrocarbons found in a Bouchard 155 reference sample collected after the 1993 oil spill in the area, but are in a much degraded and weathered state. Individual petroleum hydrocarbons were, in all but one case, below the threshold effective level (TEL) described in the literature (MacDonald, 1994). The petroleum hydrocarbons were primarily found at 100-300 cm depth in Blind Pass cores. Above-detection level petroleum hydrocarbons were generally found in samples from cores in the center of the channel, near the edges of the shoal, and just outside of Blind Pass. A second mixture of hydrocarbons, primarily phthalates, ketones, and ether, was found at relatively shallow core depths (0-99 cm) in the Mid- and North End Channel cores. These suggest a separate source of contamination, possibly storm water runoff. The fuel fluorescence detector (FFD) probe was investigated for its ability to detect petroleum hydrocarbons in marine sediments. When analyzed with the FFD, all sediments from the cores produced peaks of fluorescence, but none above the background levels of Blind Pass native sediments. All but two samples analyzed by GC/FID were below the detection limits (100 ppm) of the FFD. These samples were found in dark-colored sediments. The combination of the detection limits of the instrument, sediment color, and the degraded nature of the heavier weight petroleum hydrocarbons may have resulted in fluorescence outputs below background levels. These studies demonstrate that the distribution of petroleum hydrocarbons within Blind Pass sediments is generally low and patchy. However, 25% of the cores exhibited levels above detection using GC/FID/MS. These cores could be subjected to individual speciation studies which indicate generally below TEL levels and an association of some, but not all, with the 1993 oil spill in Blind Pass. Appendix A provides photographs and tables for sediment subsamples which exhibited total petroleum hydrocarbon concentrations above detection limits, while Appendix B presents the results from fuel fluorescence detector probe analyses. A discussion of the results of the study in relation to sediment quality guidelines and soil cleanup target level guidance documents is included as Appendix C. Some preliminary results using the above techniques on core samples from the nearby John’s Pass are presented in Appendix D
    • …
    corecore