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Analysis of intercomponent energy transfer in the interaction of
oscillating-grid turbulence with an impermeable boundary

Mark W. McCorquodale™® and R. J. Munro® )
Faculty of Engineering, University of Nottingham, Nottingham, NG7 2RD, UK

New experimental results are presented that investigate the nature of the intercomponent energy transfer
that occurs in the interaction between oscillating-grid turbulence and a solid impermeable boundary, using
instantaneous velocity measurements obtained from two-dimensional particle imaging velocimetry (PIV).
Estimates of the pressure-strain correlation term (Hfj) of the transport equation of the Reynolds stress
tensor, which represents intercomponent energy transfer, are obtained using the PIV data from a balance of
the remaining terms of the transport equation. The influence of II}; on the flow is examined by computing
the energy spectra and conditional turbulent statistics associated with events in which intercomponent energy
transfer is thought to be concentrated. Data reported here is in support of viscous and ‘return-to-isotropy’
mechanisms governing the intercomponent energy transfer previously proposed, respectively, by Perot & Moin
[B. Perot and P. Moin, J. Fluid Mech., 295, 199-227 (1995).] and Walker et al. [D. T. Walker, R. I. Leighton
and L. O. Garza-Rios, J. Fluid Mech., 320, 19-51 (1996)]. However, the data reported also indicate the
presence of a weak net intercomponent energy transfer from the boundary-normal velocity component to the
boundary-tangential velocity components over a thin region outside the viscous sublayer which is not captured

within existing models of intercomponent energy transfer at the boundary.

I. INTRODUCTION

Developing an understanding of the nature of the inter-
action of zero-mean-shear turbulence with an imperme-
able boundary has proven to be a challenging problem,
which has been useful in, for example, the development of
turbulent models.! This problem is of fundamental inter-
est as it enables the direct inhibiting effects of boundaries
on turbulent fluctuations to be isolated from indirect ef-
fects of the boundary (relating to the production of tur-
bulent kinetic energy). However, despite the apparent
simplified nature of this interaction, the nature of the
intercomponent energy transfer that occurs within the
boundary-affected region of the flow has proven to be a
controversial topic.? 4

It is thought that the initial adjustment of a zero-mean-
shear turbulent flow to the introduction of an imperme-
able boundary is well described by the rapid distortion
theory (RDT) proposed by Hunt and Graham 2. That is,
the no-penetration condition imposed by the boundary
results in a monotonic reduction in the magnitude of the

boundary-normal root-mean-square (rms) turbulent ve-
—1/2
locity component, w = (u})? / , from its expected value

in the absence of a boundary over a distance of approx-
imately one integral length scale. In addition, suddenly
imposing the wall-blocking condition (w = 0) results in
pressure increases and redistribution of turbulent kinetic
energy;> the increase in pressure instantaneously redis-
tributes energy from the boundary-normal turbulent ve-
locity component (w) to the boundary-tangential turbu-

—1/2
lent velocity components (u = (u])? / ). This results
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in amplified values of v within the boundary-affected re-
gion, relative to its expected value in the absence of a
boundary.

However, the subsequent development of the flow and
its structure in studies in which a statistically station-
ary state is reached remains unclear. Results from a
range of experimental and simulation based studies, con-
ducted in both otherwise homogeneous®® and inhomo-
geneous turbulence,%” indicate that w remains inhibited
by the boundary in accordance with the RDT proposed
by Hunt and Graham 2. However, controversy has arisen
regarding whether the blocking of w continues to give
rise to an intercomponent energy transfer from w? to
u? through a correlation between the fluctuating pres-
sure and velocity-strain fields, described by the so-called
pressure-strain term II7; of the Reynolds stress transport
equations. That is, measurements of the pressure-strain
term II?. (in both developing and statistically station-
ary ﬂowi indicate that an intercomponent energy trans-
fer from w? to u? is significant over a thin layer, typ-
ically approximately equal in thickness to the viscous
sublayer, immediately adjacent to the boundary®*7” but
the physical interpretation of these measurements remain
under dispute. That is, studies remain divided regarding
whether the intercomponent energy transfer is primarily
governed by dynamic viscous effects® or by the kinematic
blocking of the boundary.?::9

Regarding the first mechanism, Perot and Moin® used
DNS to study the effect of inserting an impermeable
boundary on an otherwise isotropic and homogeneous
turbulent flow and reported that, following the devel-
opment of a flow to the initial insertion of the bound-
ary, u was approximately constant within the boundary-
affected region except within the viscous sublayer. Sim-
ilar results for u have also been reported in a range
of other studies of zero-mean-shear turbulence interact-
ing with a boundary.*%1° To explain these results Perot



and Moin? proposed a physical model in the context of
“splats” and “antisplats”. Here the term “splats” refers
to boundary-incident turbulent motions that are blocked
by the boundary; these blocking events result in high in-
stantaneous dynamic pressure and a corresponding trans-
fer of energy from the boundary-normal velocity compo-
nent uj to the boundary-tangential velocity components
w4 and ub.? The collision of fluid elements travelling tan-
gential to the boundary was proposed to give rise to sim-
ilar events, so-called “antisplats” in which the collision
of elements again results in high instantaneous dynamic
pressure and a transfer of energy from w} and uh to uj
as the fluid elements eject from the boundary. Perot and
Moin ® proposed that the energy transfer described by the
pressure-strain term II7; did not describe a net transfer of
energy, but rather was a measure of the imbalance in the
energy associated with “splats” and “antisplats”, due to
the viscous dissipation of turbulent kinetic energy (TKE)
from fluid elements close to the boundary. That is, the
dissipation of TKE was thought to result in antisplats
that were, on average, less energetic than splats, thereby
giving rise to a non-zero averaged pressure-strain term3
but which does not result in amplified values of u within
the boundary-affected region.

However several studies have reported that u was ac-
tually amplified in the boundary-affected region relative
to values expected in the absence of the boundary,''12
which has led to an alternative interpretation of the mea-
surements of II7; in which it is thought that a net transfer
of energy from w? to u? occurs in the boundary-affected
region. Note that this interpretation is in qualitative
accordance with RDT? in which, recall, the kinematic
blocking condition governs the interaction. Note, how-
ever, that in RDT the proposed amplification of u is
conditional on the assumption that viscous effects were
confined to a viscous sublayer which was small compared
to the integral length scale of the turbulence (i.e. that
the Reynolds number is very high) such that viscous ef-
fects could be neglected. This assumption implies that
the theory may be valid only for short times over which
the turbulence does not decay significantly. As a result,
the validity of RDT to describe the subsequent devel-
opment of the flow after boundary insertion has been
questioned.?® Nonetheless, it has been proposed that
RDT remains valid to describe the development of zero-
mean-shear turbulence at an impermeable boundary at
sufficiently high Reynolds number.?

More recently Bodart, Cazalbou, and Joly* proposed
that the intercomponent energy transfer described by II};
was indeed a net transfer of energy but which only occurs
in flows with large skewness (ujuju}/w?) of the turbu-
lent velocity field. However, they were unable to provide
a physical model to support their assertion that a net
intercomponent energy transfer occurred. Indeed, their
measured values of u exhibited a monotonic reduction in
the boundary-affected region - consistent with the results
of Perot and Moin?, in which, we recall, it was argued
that no net intercomponent energy transfer occurred.

Further from the boundary (outside the viscous sub-
layer but within the boundary-affected region) the sign

of II}; is reported to reverse and an intercomponent

energy transfer from energy-rich u? components to

the energy-poor w? component has been reported to
occur.>*713 Walker, Leighton, and Garza-Rios'3 pro-
posed that this so-called “return-to-isotropy” intercom-
ponent energy transfer results from anisotropy induced
from the kinematic blocking condition acting on uj.
(Note that here the term “return to isotropy” is used
specifically to refer to the energy transfer from u? to w?,
in a region in which u > w, and does not refer to a tem-
poral evolution in statistics.)

In light of its statistical properties, oscillating-grid tur-
bulence (OGT) has also been used to study the interac-
tion of approximately zero-mean-shear turbulence at a
boundary. In these studies u has typically been found
to be amplified in the boundary-affected region®”1415 in
qualitative agreement with the RDT predictions.?® How-
ever, in a recent study’ the current authors presented
measurements of the terms of transport equation of TKE,
which attributed the observed increase in u? primarily
to the effects of turbulent transport, rather than inter-
component energy transfer. McCorquodale and Munro”
attributed the observed near-wall peak of IIf;, over a
thin region approximately equal in thickness to the vis-
cous sublayer, to a viscous effect® and consequently con-
cluded that a net energy transfer from w? to u? (if any
occurred) was not a prominent mechanism in determin-
ing the spatial structure of w in the boundary-affected
region of this flow. McCorquodale and Munro” further
concluded that the ‘return-to-isotropy’ intercomponent
energy transfer was not independent of the effects of
turbulent transport and that boundary-normal inhomo-
geneity outside the boundary-affected region could pro-
mote a stronger ‘return-to-isotropy’ intercomponent en-
ergy transfer within the boundary-affected region, con-
sistent with key elements of a related model of the inter-
component energy transfer derived by Magnaudet®.

However, analysis of ongoing experiments to study the
interaction of OGT with a permeable boundary (not re-
ported here) indicates the presence of a weak net in-
tercomponent energy transfer mechanism from w? to u?
in a thin region just outside the viscous sublayer. The
need to document and interpret this new observation
has provided the motivation for the current paper, in
which we report new results from experiments study-
ing the interaction between OGT and a solid boundary
to cast new light specifically on intercomponent energy
transfer within the boundary-affected region of approxi-
mately zero-mean-shear turbulence at a solid boundary.
In §IT we describe the experimental set-up and the parti-
cle imaging velocimetry (PIV) technique used to measure
the flow. In §III we present estimates of the pressure-
strain term describing intercomponent energy transfer.
In §IV we present measurements of the energy spectra
which provide evidence of the nature of the intercompo-
nent energy transfer described in §III. In §V we present



results of a statistical analysis of splats and antisplats
which provides further evidence of the nature of the in-
tercomponent energy transfer observed. Discussions and
conclusions are made in §VI.

Il. EXPERIMENTS

A schematic view of the experimental set-up is shown
in figure 1. We stress that the apparatus are identical to
those used in the recent related study”, to which we refer
the reader for a detailed description.

The experiments were conducted in a transparent
acrylic box with internal dimensions 35.2 cm x 35.2cm X
48 cm, henceforth denoted the ‘outer box’ (see figure 1),
which was filled with a salt-water solution of uniform den-
sity p = 1.028 g/cm”. (We note here that the salt water
was used to make the seeding particles, need for the PIV
techniques, neutrally buoyant.) An open-ended inner
box, constructed from 0.5cm thick transparent acrylic
with internal dimensions 24.5 cm x 24.5 cm x 26.5 cm, was
fixed centrally on-plan at the base of the tank, as shown
in figure 1, which was used to systematically reduce the
mean flow present within the turbulence produced, as
described in detail by McCorquodale 6. We will hence-
forth let 2L = 24.5cm denote the internal width of the
inner box. The grid was suspended inside the outer box
with its plane horizontal and positioned so that when
at the bottom of its stroke it was 1cm above the top
of the inner box (see figure la). The grid was of stain-
less steel construction and consisted of an array of 7 x 7
bars, with square cross-section of 1 cm width, mesh spac-
ing M = 5c¢m and corresponding solidity of 36.4%. The
grid was attached to a stainless steel drive shaft (of 1cm
diameter) and vertically oscillated by converting the ro-
tary motion of a motorised flywheel rotating with con-
stant frequency f to reciprocating linear motion using
a cam and linear bearing (see figure 1a). A solid false-
floor plate, spanning the interior of the inner tank, was
inserted parallel to the grid and at a depth H ~ 4.2M
below the grid’s mean position (see figure la). Previ-
ous studies have shown that at distances less than 2.5M
below the grid’s mean position the flow produced by the
oscillating-grid is strongly anisotropic and exhibits coher-
ent jet-type structures.'%17 Inserting the false-floor plate
at the depth H ~ 4.2M ensured that the region where
the turbulence was affected by the plate did not extend
into the near-grid anisotropic region.

Here, we report results from five sets of experiments,
in which the stroke (defined as equal to the amplitude
of the grid’s motion) S was set to be either 2.5cm or
3.0cm and the frequency of the grid’s oscillation f was
varied between 1.6 Hz and 5.4Hz. The corresponding
grid Reynolds numbers for these five experiments were
Reg = MSf/v = 2020, 4220, 5260, 6480 and 8100. Fur-
ther increases in Reg were not possible; proportionately
more intense mean flows (in comparison to the magnitude
of the fluctuations) are known to arise at higher grid os-
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FIG. 1. Sketches showing the key components of the experi-
mental set-up. (a) A side view showing the positioning of the
reciprocating drive mechanism, the horizontal grid, the false
floor and the inner and outer boxes. (b) A plan view showing
the position of the inner box relative to the grid’s mesh, and
the position of the camera relative to the vertical laser-sheet.
Also shown are the coordinate directions (z1, 22, z3), and the
vertical height normal to the false floor, denoted £ = H — z3.

cillation frequency,'® such that turbulence produced is a
poor approximation to zero-mean-shear turbulence. For
each of the five grid Reynolds numbers, the experiments
were repeated, under nominally identical conditions, a to-
tal of 5 times. We note that the measurements from the
experiments reported at Reg ~ 2020 and 4220 formed
part of the data-set previously reported by McCorquo-
dale and Munro”. That is, McCorquodale and Munro”
reported measurements from 31 experiments over the
range Reg ~ 1520 to 8100, however only a subset of these
experiments (at Reg ~~ 2020 and 4220) were repeated un-
der nominally identical conditions. Here we have re-used
this subset of the original measurements in order to re-
port new results from the additional analysis described



in this paper. In addition, we also report measurements
from new experiments (i.e. experiments which were not
reported previously in McCorquodale and Munro”) at
Reg ~ 5260, 6480 and 8100 which were repeated a total
of 5 times; this approach facilitated the use of ensemble-
averages to reduce scatter in the data.

Measurements of instantaneous fluid velocities were
obtained using the same technique described in Mec-
Corquodale and Munro”. The salt-water solution was
seeded with neutrally buoyant tracer particles (Pliolite
with diameter range 75 to 125 ym) and two-dimensional
PIV applied to the vertical plane through the centre of
the grid, in the region inside the inner box spanned by
the grid and the false-floor. PIV calculations were per-
formed using square interrogation windows of 13 x 13
pixels, overlapped to achieve 8 pixel spacing between ve-
locity vectors, resulting in a physical spacing between
velocity vectors of approximately 0.2 cm.

The velocity data were calculated and analysed rela-
tive to the right-handed coordinate system (x1, 9, 23);
here, z3 denotes vertical depth below the mid-height of
the grid’s oscillation, and (x1,x2) are the horizontal co-
ordinates relative to the center of the grid (see figure
1). The corresponding velocity components are denoted
(u1, ug,uz); the two components measured using the PIV
set-up described above are u;(x1,x3,t) and ug(x1, x3,t),
in the central plane at o = 0. OGT is statistically
stationary and so the statistical properties of the flow
were analysed using time averages. That is, close to the
grid (i.e. for x3 < 2.5M) jets form in the wake of the
grid resulting in a flow field characterised by the pres-
ence of energetic, mesh-size coherent vortex structures
that interact and breakdown as they are advected away
from the grid,'®1719 such that the oscillation of the grid
directly influences the structure of the flow in this re-
gion on a timescale of the order 1/f.'® However, in this
study we are concerned only with measurements of the
flow beneath this near-grid region (i.e. for zg > 2.5M)
and analysis of the velocity measurements in this region
do not indicate the presence of strong signatures relat-
ing to the grid forcing frequency. Consequently, we use
the conventional Reynolds decomposition u; = U; + u},
where u}(x,t) denote the fluctuating components and
U;(x) = u; the time-averaged mean components (the
overbar notation is used throughout to denote time av-
eraging). Previous studies have indicated that converged
time-averaged statistics derived from PIV measurements
of OGT flows can be obtained using an averaging period
of between 100s and 1205s.2°°23 Here analysis of the data
confirmed that the time-averaged mean and rms veloc-
ity components were converged to within approximately
5% of their ultimate values over an averaging period of
240s. We also introduce the coordinate ¢ = H — z3,
which denotes vertical height above the false floor (see
figure 1a). This coordinate is used only for convenience
when plotting and comparing data; we stress that all ve-
locities (and derivatives of velocities) were calculated in
terms of the right-handed coordinates (z1, z2, z3).

In the absence of the false-floor, and away from the
inner-box sidewalls, the turbulence produced by the os-
cillating grid was found to be in good agreement with
standard models of OGT.'"-?* That is, with this appa-
ratus the turbulent flow below the anisotropic near-grid
region (i.e. for x3 2 2.5M) is statistically stationary,
approximately homogeneous and isotropic on horizontal
planes across a central region of the tank (|z1/L| < 1/2)
and decays spatially with distance below the grid.!6
Outside the central region of the tank |z;/L| > 1/2
anisotropic side wall regions exist, which are described
in detail by McCorquodale '°. Hence throughout this pa-
per our attention is focused on the central region given
by |x1/L] < 1/2 and the sidewall anisotropic regions are
ignored in the calculation of turbulent statistics. Mc-
Corquodale and Munro ” showed that, with the false-floor
installed results indicate that the boundary induced ef-
fects are mostly confined to a layer of height d; above the
false-floor. That is, the boundary-affected region is de-
fined as the thin layer over which the degree of isotropy
w/u departs from its value of approximately unity away
from the boundary”!'7?® and decreases to zero as the
boundary is approached.®" 18 It is at the edge of this re-
gion that the turbulence first feels the inhibiting effects
of the kinematic blocking condition of the boundary. Mc-
Corquodale and Munro” reported that in the current ap-
paratus ds is of the order of the integral length scale of
the turbulence, consistent with the results of previous
studies.>%14 Data describing the statistical structure of
the mean and turbulent components of the flow, both
within the boundary-affected region (i.e. & < d5) and
above the boundary-affected region (i.e. £ > d5), were in
good agreement with the results reported previously by
McCorquodale and Munro 7, to which we refer the reader
for detailed illustrations of the statistical structure of the
flow.

. ESTIMATES OF THE PRESSURE-STRAIN
CORRELATION

In section I we noted that intercomponent energy
transfer is described by the pressure-strain correlation
term (i.e. II3; in equation 1 below) of the Reynolds
stress transport equation, of which the steady form may
be written as (see Hinze2® p. 323)

0 oU; ou; 0 ——
0=-U Tl oyl ! L ] J Yy
k@xk U UG — U Uy, D U Uy Dy Oan iUy U
Afj D;; T;;
1 1 [0u  Oul
- ol o o J 7
p(axﬁ’ i " oa,P l)*pp (8@ ax;)
H?j Hfj
N aQu;u; au; au;- (1)
[/ — _J
8xk8xk 8xk 8.%‘;@’
Dij €ij



where Af’j and ®;; denote, respectively, transport and

production due to the mean flow; T;; and Hglj denote,
respectively, transport by velocity and pressure fluctua-
tions; D;; and €;; denote molecular diffusion and viscous
dissipation. Estimates of the terms of equation (1) for
the interaction of OGT with an impermeable boundary
were recently reported by the current authors.” In this
section we briefly revisit the previous estimates of 1I5;
reported by McCorquodale and Munro” and highlight
key aspects of the results pertinent to the current work.
That is, McCorquodale and Munro” reported estimates
of IIj; from experiments which form part of the data-set
reported here (i.e. those experiments at Reg =~ 2020
and 4220). Estimates of IIj; from the experiments at
Res ~ 5260, 6480 and 8100 have not previously been
reported as these experiments did not form part of the
data-set initially reported in McCorquodale and Munro ’
(see section II).

Within the inner box’s central region—the region of
interest—the turbulence is approximately homogeneous
on horizontal planes and so u;u; = 0 for i # j. In ad-
dition, given the redistributive nature of the pressure-
strain correlation term (IIf; = 0), since the turbulence
is approximately homogeneous on horizontal planes we
can assume 2II; ~ 2II3, ~ —II3;. Hence, an under-
standing of the pressure-strain correlation term II7; can
be reached by considering only the transport equation
for the Reynolds stress u}u} = u?. Noting that in turbu-
lence that is approximately homogeneous on horizontal
planes I1¢, ~ 0, then the transport equation for u? can
be expressed as

0 —— —0U; 0 ——
0=-U,—uu, —2u' v, — ———u' v
axk 1%1 1 kark 8.Z‘k 11 %k
A, Py T11
2 0u) O%ul v ou) ou}
+ -p v—— —2v . (2)
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We stress that a direct evaluation of II7;, or the other
terms of (2), is not possible for the current experiments,
requiring instantaneous measurements of pressure fluctu-
ations and of all three velocity components. However, a
number of simplifying assumptions can be made to al-
low estimation of the terms not involving pressure fluc-
tuations. IIj; can then be estimated from a balance of
the remaining terms in (2); an approach also used pre-
viously by Aronson, Johansson, and Lofdahl®. The sim-
plifying assumptions necessary for this approach include:
(i) the time-averaged statistical properties of the flow are
assumed to be symmetric in the z;- and xs-directions
(based on the symmetry of the experimental set-up). (ii)
The turbulence is assumed to be approximately homo-
geneous in horizontal planes. (iii) The approximation

(O |0z5)? = 2(0u, /dx1)” can be used in calculation of
the dissipation terms—a relationship which is known to
hold for homogeneous, isotropic turbulence (see Pope 27

p. 134). Note that when evaluating the velocity deriva-
tives, the no slip and impermeability conditions (u; = 0)
were applied at & = 0.

Estimates of the terms of (2) produced using the
scheme outlined above are shown in figure 2, for experi-
ments conducted at Reg = 2020 and 4220 (first reported
in McCorquodale and Munro”), plotted against scaled
height £/d5. The scheme outlined above inevitably pro-
duced scatter in the results so, in an effort to reduce
scatter, the data were averaged in the x;-direction over
the central 50% of the inner box’s width (we henceforth
denote this averaging by (-)1) and also averaged over
the 5 repeat experiments conducted under each condi-
tion. That is, as indicated in section II, previous stud-
ies using the current apparatus have identified the pres-
ence of anisotropic wall-affected regions close to the tank
side walls but indicated that turbulence is approximately
homogeneous on horizontal planes parallel to the grid
across the central 50% of the inner box’s width,”'¢ con-
sequently spatial averaging has been conducted over only
this central region. To facilitate comparison, the data
have been normalised by the magnitude of the corre-
sponding component of energy dissipation evaluated at
the height £ = 05, denoted |e11]5,. We note that here
we were unable to obtain reliable estimates of the terms
of (2) for experiments conducted at Reg =~ 5260, 6480
and 8100 (i.e. the additional experiments not reported in
McCorquodale and Munro”) due to limitations inherent
within our 2D PIV measurements. That is, the limited
resolution of the PIV used (a resolution of approximately
0.2 cm) was insufficient to capture all scales of turbulent
motion and led to underestimation of some terms (pri-
marily the dissipation 17 term) in equation (2). Since
the pressure-strain term II7; is determined from a bal-
ance of the remaining terms in (2) this limitation gives
rise to unreliable estimates of II7; for these experiments
and, as a consequence, results for these experiments are
not shown here.

Figure 2 indicates that, within the boundary-effected
region, II7; initially undergoes a gradual and slight re-
duction over the region 0.6 < £/0s < 1, a slight (pos-
itive) increase over the region 0.3 < £/0s < 0.6 and a
sharp increase to a near-wall (positive) peak value over
the region £/ds < 0.3. Note that the sharp increase in
II§, over the region £/ds < 0.3 occurs over a region of
thickness approximately equal to the viscous sublayer.”
We stress that similar features of 117, are evident in the
measurements of the studies by Perot and Moin 3, Aron-
son, Johansson, and Léfdahl® and Bodart, Cazalbou, and
Joly 4.

The initial reduction of IIf; at the edge of the
boundary-affected region (i.e. at £/ds ~ 1) as the bound-
ary is approached, shown in figure 2, has previously been
attributed to a return-to-isotropy intercomponent energy
transfer,”!3 whilst the sharp increase in II; over a re-
gion approximately equal in thickness to the viscous sub-
layer has previously been attributed to the viscous ef-
fects resulting in splat-antisplat disequilibrium.*” How-
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FIG. 2. Measurements of terms in the transport equation
(2) at different Reynolds number - (a)Reg = 2020 and
(b)Reg = 4220. Different symbols have been used to de-
note each term, which are shown in the legend. Each term
has been spatially averaged in the xi-direction (i.e. (-)1),
and has been normalised by the magnitude of the dissipation
evaluated at the edge of the boundary-affected region, |e11]s, .

ever, the cause of the initial increase in II{; over the re-
gion 0.3 < £/6s < 0.6 does not appear consistent with ei-
ther of these mechanisms and, as far as we are aware, has
not previously received comment. Note that in previous
studies of the interaction of zero-mean-shear turbulence
with an impermeable boundary,# the initial increases in
the pressure-strain term IIf; occur in regions in which
viscous dissipation is not enhanced and rather the in-
crease in I1§, is offset by transport terms (as in figure 2).
Consequently, this intermediate region, over which II, is
small and therefore indicates only a weak intercomponent
energy transfer may occur from the boundary-normal to
the boundary-tangential velocity components, is the fo-
cus of the analysis here; the interpretation of II7; over
this region is explored in sections IV and V.

IV. ENERGY SPECTRA

In previous studies of OGT interacting with a bound-
ary, spectra have been used to gain insight into inter-

component energy transfer,®!%!5 and have been com-

pared against the spectral estimates derived from RDT.?
The energy spectra for the vertical velocity fluctua-
tions E,,(fg) and for the horizontal velocity fluctuations
E.(fr) at different distances /ds away from the plate
are shown in figure 3 for a representative subset of the
experiments. Here fr denotes the spectral frequency.
Only a representative subset of the experiments has been
shown in figure 3 for the purposes of brevity; we stress
that the same conclusions can be drawn from the exper-
iments at each Reynolds number. We note that, since
we unable to fully resolve the dissipative scales within
the flow (see section IIT) this may lead to a slight under-
estimate of the total energy content within the energy
spectra. However, we stress that in this section we are
primarily concerned with the effect of the boundary on
the (well-resolved) large scales within the flow, such that
this limitation does not alter the conclusions drawn. The
estimates of the energy spectra shown in figure 3 have
been normalised by the square of the magnitude of the
corresponding rms turbulent velocity component at the
edge of the boundary-affected region, denoted w3 or u3 ,
and by the grid oscillation frequency f. We stress that
in this flow Taylor’s frozen turbulence hypothesis cannot
be invoked to estimate the corresponding wavenumber
spectra and that the spatial resolution of the PIV data
in the xq-direction is not sufficient to directly compute
a complete wavenumber spectra. As a result, a direct
analysis of the spatial scales over which the energy spec-
tra are influenced by the boundary is not possible, nor
is a quantitative comparison to the spectral estimates
derived from RDT.2 Rather, in this section we are con-
strained to analysis within the frequency domain, from
which we loosely infer results relating to the size of af-
fected turbulent motions.

Consistent with previous work,>%1415 as the bound-
ary is approached (£/ds — 0) estimates of E,,, shown in
figure 3(a,b), reduce at small frequencies (large scales)
and depart from a —5/3 decay. [A —5/3 decay is con-
sistent with an inertial subrange in zero-mean turbulent
flow and has previously been reported in OGT.5] As /4,
reduces (see figure legend), progressively larger frequen-
cies (smaller scales) are shown to be inhibited in qualita-
tive agreement with the spectral estimates derived from
RDT,? consistent with the blocking effect of the bound-
ary.

In contrast, estimates of E,, shown in figure 3(c,d) ex-
hibit only very slight increases at small frequencies (large
scales) as the boundary is approached (i.e as £/J; re-
duces), except within a thin region close to the boundary
approximately equal in thickness to the viscous sublayer
(i.e. over the region £/ds < 0.3) within which F,, dimin-
ishes as the boundary is approached as a result of the in-
creased dissipation of TKE. (This is particularly evident
in figure 3c.) The increase in E,, at small frequencies as
the boundary is approached is in qualitative accordance
with previously reported measurements from OGT, 61415
although we note that the observed increase in F,, is sig-
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FIG. 3. Measurements of the energy spectra for (a,b) the vertical velocity fluctuations E,, and (c,d) for the horizontal velocity
fluctuations E, against spectral frequency fg for different distances above the boundary £/d, [see legends in (a,b) which also
apply to (c,d) respectively]. Data has been normalised by the grid oscillation frequency f and the magnitude of corresponding
rms turbulent velocity component at the edge of the boundary-affected region, denoted wgs and u?s. Representative results
from a subset of experiments are shown; data shown in (a,c) correspond to experiments conducted at Reg = 4220 and (b,d)

correspond to experiments conducted at Reg = 8100.

nificantly smaller than that reported by Hannoun, Fer-
nando, and List ® for which the cause is currently unclear.
This increase in E, at small frequencies or large scales
has previously been interpreted as evidence of net inter-
component energy transfer from w? to u? at large spatial
scales, sufficient to give rise to an amplification of u?
with the boundary-affected region.?%1415 In particular,
amplification of the F,, spectra at small wavenumbers has
been attributed to effects of turbulent eddies impinging
onto a boundary (i.e. splats), whereby they flatten at the
boundary and transfer the energy of the vertical compo-
nent to the horizontal components, and to the non-linear
effects of vortex stretching at the boundary which act to
increase F, at large spatial scales.'* Note however that
figure 3 shows that the affect of the boundary on E,
at small frequency is significantly smaller than the af-
fect on E,,. This is not unexpected; some TKE is lost
due to increases in the energy associated with the mean-
dynamic pressure within the boundary-affected region.?
That is, the steady mean-flow momentum equations re-
late how the fluid undergoes an increase in mean dynamic
pressure within the boundary-affected region at the ex-

pense of TKE; for OGT under idealised conditions (zero
mean flow, with the turbulence homogeneous in horizon-
tal planes), the steady mean-flow momentum equations
simplify to

orP _ O(uzu) and oP

81‘3 =F 8.%‘3 8.’1)1 -
Importantly, this indicates that the observed intercom-
ponent energy transfer is not a traceless transfer of en-
ergy between the velocity components, and may only give
rise to a weak amplification of u? within the boundary-
affected region (for example, see Perot and Moin?® and
Aronson, Johansson, and Lofdahl®). That is, we stress
that the principal mechanism reported to give rise to an
amplification of u? within the boundary-affected region
of OGT has been the blocking of a far-field TKE flux.”
Regardless, the measurements of the energy spectra are
consistent with the estimates of the pressure-strain corre-
lation term presented in section III, indicating the pres-
ence of a weak net intercomponent energy transfer from
the boundary-normal to the boundary-tangential veloc-
ity component outside the viscous sublayer.

0,i=1,2. (3)



V. QUADRANT ANALYSIS

In section I we noted that intercomponent energy
transfer described by the pressure-strain correlation term
II7; is thought to manifest within the boundary-affected
region as an imbalance in the energy associated with
splats and antisplats.®# In this section we aim to better
understand intercomponent energy transfer by use of a
statistical approach to identify and isolate events within
the turbulent flow that exhibit characteristics expected
of splats and antisplats. That is, the stagnation flow as-
sociated with splats and antisplats is thought to exhibit
strongly decelerating flow and in section V A we use this
feature as a criteria to identify splats and antisplats. In
section V B, conditional turbulent statistics associated
with splats and antisplats are evaluated, where the con-
ditions derived in section V A are used as sampling con-
ditions.

A. A criteria for isolating splats and antisplats

Splats and antisplats are fluid elements that exhibit
strong vertically decelerating flow (i.e. large spatial gra-
dients in wuj); splat events moving towards the bound-
ary (us > 0) yield negative values of the vertical strain
rate Ouf /Ox3 and antisplat events moving away from the
boundary (u} < 0) yield positive values of the vertical
strain rate du} /0z3.3*° However, fluid elements that ex-
hibit these statistical characteristics exist throughout the
entire flow, as a consequence of the random structure of
a turbulent flow. On the other hand, the blocking as-
sociated with the formation of splats and antisplats is
expected to give rise to more strongly decelerating flow
than observed in the bulk interior of the flow. Thus,
it is our premise that splats and antisplats may be iso-
lated from the background flow by use of a threshold
or critical value on the magnitude of the vertical strain
rate Juj/0x3. In the analysis that follows we define this
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threshold value in comparison to an average reference
value of the strain rate given by w/f,, where £, de-
notes the time-averaged transverse integral length scale
of the boundary-normal velocity component uj5. This ref-
erence strain rate is devised from an order of magnitude
analysis (as per Bodart, Cazalbou, and Joly*); when a
fluid packet of size ¢ meets the boundary with velocity
uf the vertical strain rate can be estimated as u}/¢. For
a given point within the boundary-affected region the
average velocity and size of a fluid packet is given by
w and ¢, respectively; results from wavenumber spec-
tra indicate that, within the boundary-affected region,
as the boundary is approached increasingly smaller spa-
tial scales are blocked by the boundary,?'4 such that one
expects the remaining fluid packets to gradually reduce
in size as the boundary is approached and, consistent
with this concept, £,, monotonically reduces within the
boundary-affected region as a result of the blocking effect
of the boundary.” Thus we expect a measure of the av-
erage strain rate observed within the boundary-affected
region to scale with w/f,. The reference strain rate
also retains an appropriate physical interpretation out-
side the boundary-affected region; on average we expect
the vertical strain rate of the fluid packet to scale with
the average packet velocity, w, and inversely scale with
the average packet size, ¢,,. For reference, we note that
outside the boundary-affected region ¢,, is approximately
constant and w monotonically reduces as the boundary
is approached.”

To validate this premise we determine typical values
(ranges of high probability) of |(£,,/w)dul/dxs| within
the bulk interior of the flow and illustrate that the block-
ing effect of the boundary gives rise to larger values of
|(£ /w)Oul /O3] in the boundary-affected region in com-
parison to those observed in the bulk interior of the flow;
we interpret these measurements of strongly decelerating
flow to the formation of splats and antisplats. To distin-
guish between splats and antisplats, we further consider
measurements split into 4 quadrants based upon the sign
of uj and Ouf/Ox3. That is, we calculate:

P(igu3>¢>T0u3>0)> , (4a)
1
Ew 3u3
/
%22 < —¢r Nujy < O)> (4c)
Vi /
f;“g;i<—¢Tmu3>0)> (4d)

(

in the x;-direction over the central region |z1/L| < 1/2.
In equation (4) ¢r denotes a (positive) constant that



is gradually increased from 0 to determine characteris-
tic (high probability) ranges of (£,,/w)du}/dx3. That is,
when ¢ = 0 we consider the probability of each quad-
rant based upon every measurement of the flow field,
but as ¢ increases the evaluated probabilities associated
with each quadrant decrease (i.e. P(¢r = 0) > P(o1 >
0)) because those events that exhibit |(£,,/w)0u}/Ox3| <
¢7 are excluded from the analysis. A range of values of
¢ have been considered but for clarity we report here
only ¢ = 0,2 and 6, which are sufficient to illustrate the
key aspects of the analysis. We stress that previous work
has indicated that splats and antisplats correspond to
fluid elements in quadrants Q4 and Qs respectively,®%?
therefore subsequently we consider only these quadrants.

Results from experiments at the 5 different grid
Reynolds numbers considered are shown in figure 4, plot-
ted against scaled height £/6s. We note that, since we
unable to fully resolve the dissipative scales within the
flow (see section III) this may lead to underestimates
of the instantaneous vertical strain rate duj/dx3. How-
ever, this is not anticipated to influence results evaluated
under the condition ¢ = 0 since in this case we are con-
cerned only with the sign of the strain rate, and not its
magnitude. In addition, we stress that in this section we
are primarily concerned with fluid elements as they are
blocked by the boundary - a process which primarily in-
fluences the large scales within the flow (see discussion of
section IV and references therein). Therefore, given that
previous studies have indicated that the dissipative scales
are largely unaffected by the presence of the boundary
(except within the viscous sublayer),'* the small scales
are not thought to be dynamically significant within this
analysis; the small unresolved scales are not blocked by
the boundary except within £/6s < 0.1.

Outside of the boundary-affected region (£/0s > 1),
turbulent motions do not directly feel the inhibiting ef-
fects of the boundary, so spatial gradients of uj arise only
from random turbulent structure. Consequently, over
this region (£/ds > 1) the overall probability (i.e. evalu-
ated by considering every measurement of the flow field,
using the condition ¢ = 0) of each quadrant is approxi-
mately constant with a value in the range 0.2-0.3, shown
in figure 4. The probability that the normalised strain
rate (€, /w)Oul/0z3 exceeds 2 is small (approximately
0.07), therefore figure 4 indicates that in this region the
magnitude of the normalised strain rate typically lies be-
tween 0 and 2. In addition, the probability that the nor-
malised strain rate exceeds 6 is negligible. Thus we con-
clude that imposing the condition |(£,,/w)du}/dx3| > 6
appears to be sufficient to remove the background turbu-
lent fluctuations that do not feel the inhibiting effects of
the boundary.

Within the boundary-affected region (£/6s < 1), fig-
ure 4 shows that there is a small increase in the overall
probability (i.e. given by ¢r = 0) of events in Q2 and
Q4 over the region £/, ~ 0.6-1. However, the observed
magnitudes of duf/Oxs over the region 0.6 < £/§, < 1
are in general consistent with those observed in the bulk
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FIG. 4. Measurements of the probability (described by (4))
that the normalised strain rate (£, /w)dub/Or3 surpasses a
given constant ¢r [for values of ¢r see legend in (b) which
applies to both plots], against scaled height above the bound-
ary £/ds. In (a) the data is subject to the additional condi-
tions us < 0 and Qus/dxs > 0, in (b) the data is subject to
the additional conditions w3 > 0 and duj/0z3 < 0. Results
from experiments at the 5 different grid Reynolds numbers
are shown for each ¢r; in order to retain clarity within the
figure each grid Reynolds number has not been individually
identified, instead data are plotted differently for Rec < 4220
and Reg > 5260 [see legend in (b)]. Each data-set shown is
an average of the measurements obtained across the 5 repeats
conducted for each condition.

interior region of the flow. That is, figure 4 indicates
that in the region 0.6 < £/§; < 1 the magnitude of the
normalised strain rate typically still lies between 0 and
2 and the probability that an event falls within a given
quadrant and that the normalised strain rate exceeds 2
is still approximately just 0.08. Crucially, the probabil-
ity that the normalised strain rate exceeds 6 (i.e. the
probability evaluated when ¢r = 6) remains negligible
for 0.6 < ¢/0s < 1. Thus, flow that is more strongly de-
celerating (i.e. which exhibits a larger normalised strain
rate) than the flow outside the boundary-affected region
(which, recall, is indicative of splats and antisplats) is
not regularly observed for 0.6 < £/d, < 1.

However, over the region £/d5 < 0.6 the probability of
events in Q2 and Q4 sharply increases and the observed



magnitudes of duj/0x3 of events in Q and Q4 also ex-
ceed those observed in the bulk interior region of the flow.
That is, figure 4 indicates that for £/0s < 0.6 the overall
probability of events in Q2 and Q4 (i.e. evaluated us-
ing the condition ¢ = 0) significantly increases as the
boundary is approached. However, figure 4 also shows
that for £/0s < 0.6 the probability of events in Q2 and Q4
when ¢ = 6 also significantly increases as the boundary
is approached, and that the increase in probability when
¢ = 6 is approximately equal to the increase in probabil-
ity when ¢ = 0. Thus over the region £/0s < 0.6 the in-
crease in the probability of events in @ and @4 is primar-
ily driven by events which satisfy the condition ¢ = 6
(i.e. which exhibit |(£,,/w)0u}/dx3| > 6) and therefore
that exhibit larger strain rates than typically observed in
the bulk interior of the flow (£/§; > 1). We stress that
here events in Q5 and Q)4 exhibit spatial gradients which
describe a reduction in the magnitude of u4 as the bound-
ary is approached. Hence, this increase in probability of
events in Q2 and ()4 within the boundary-affected re-
gion (which also exhibit large normalised strain rates)
is attributed to the inhibiting effects of the boundaries
on the turbulence (i.e. the formation of splats and anti-
splats). We attribute the increasing probability of large
normalised strain rates that is observed as the boundary
is approached to a greater range of spatial scales being
blocked by the boundary and to the prevalence of viscous
effects on the turbulence close to the boundary. Thus
within the boundary-affected region measured events in
Q2 and Q4 consist of a mix of splats, antisplats and back-
ground turbulent fluctuations. However, in light of the
characteristic values of |(£,,/w)duj}/0z3| observed in the
bulk interior of the flow (i.e. random turbulent fluctua-
tions are characterised by |(f,,/w)0u}/0x3| < 6), these
results indicate that using the condition ¢ = 6 appears
to be sufficient to isolate splats and antisplats from back-
ground turbulent fluctuations.

Note also that the results shown indicate a Reg effect;
for Reg < 4220, results, shown in figure 4, indicate that
the same trends apply until £/§; = 0.2, at which point
the probability of events in Q2 and Q4 peaks and then
reduces. The origin of this effect is unclear, although
we conjecture that this effect may arise from a data pro-
cessing issue relating to computation of the strain rates.
That is, within the viscous sublayer the fluid velocities
are much smaller than within the bulk of the flow, such
that the uncertainty within these measurements as a pro-
portion of the fluid velocity may be large. Thus, the error
associated with these measurements may give rise to un-
reliable estimates of the strain rate. This effect is likely to
be more prevalent at low Reynolds number as a result of
the lower fluid velocities that occur in these experiments.

B. Conditional statistics

Within the boundary-affected region of the flow, in-
tercomponent energy transfer is thought to be governed
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by an imbalance in the energy associated with splats and
antisplats;>4 in this section we seek to explicitly consider
this imbalance by computing conditional turbulent statis-
tics from measurements of the flow that exhibit charac-
teristics expected of splats and antisplats. That is, we
compute conditional rms values of u}j where the criteria
developed in section V A to isolate splats and antisplats
are used as conditioning events. We denote the rms val-
ues of u associated with measurements of the flow in-
dicative of splats and antisplats by ug, and ug, respec-
tively. Hence, ug, and ug, are rms values of uj given
that the measurements used to compute these statistics
satisfy the conditions (£, /w)0u}/0x3 > ¢ Nuj < 0 and
(€ /w)Ous O3 < —d7 Nl > 0, respectively. We note
that uq,(¢r = 6) and ug,(¢r = 6) can only be evalu-
ated for £/d; < 0.6 since measurements of the flow only
exhibit |(€,/w)Ouy /x| > 6 (i.e. strongly decelerating
flow indicative of splats and antisplats) for /65 < 0.6
(see section V A).

In order to determine if an imbalance in the energy
of splats and antisplats was dominant in giving rise to
the average statistical structure of the flow within the
boundary-affected region, values of ug, and ug, have
been computed as a function of ¢p. That is, condi-
tional ug, and ug, statistics associated with specifically
splats and antisplats have been computed using the crit-
ical value ¢ = 6 (see section V A) and the results com-
pared against conditional statistics evaluated for ¢ < 6
(i.e. in which the effects of splats and antisplats are
not isolated from the background flow). A range of val-
ues of ¢ have been considered but for clarity we report
here only ¢ = 0 and 6, which are sufficient to illustrate
the effects of splats and antisplats, in comparison to the
background flow, on the average statistical structure of
the flow. That is, they are sufficient to illustrate that
the imbalance of energy associated with splats and anti-
splats that is isolated when ¢p = 6 is able to overcome
any additional weak contribution from the random turbu-
lent fluctuations (characterised by |(€,, /w)du}/0z3| < 6)
that are included within the conditional statistics when
¢r < 6. Measurements of ug, and ug, are shown in
figure 5 plotted against scaled height &/ds.

In order to illustrate boundary effects associated with
splats and antisplats on the measured values of ug, and
uQ,, we first consider values of ug, and ug, evaluated
with ¢ = 0 outside the boundary-affected region (i.e.
these are values of ug, and ug, associated with the back-
ground flow only). Outside the boundary-affected region
(i.e. for /65 > 1) figure 5(a-c) indicate that ug, > ug,,
which indicates that the energy associated with turbu-
lent motions incident towards the boundary exceeds that
of turbulent motions moving away from the boundary
(recall that ug, satisfy the condition uf > 0 and ug,
the condition uj < 0). We stress that this is simply a
result of the anisotropic nature of the flow produced by
OGT, whereby the magnitude of turbulent fluctuations
decay with distance beneath the grid, which gives rise to
a TKE flux away from the grid towards the boundary.”
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between the magnitude of ug, and ug,. (d) Shows the same data as (c) subject to the condition ¢ = 6 (note the different
scales used). In each plot a single data-set is shown for each experimental condition, which is an average of the measurements

obtained across the 5 repeats conducted for each condition.

Figure 5(a-c) show that this trend diminishes at the
edge of the boundary-affected region (£/ds ~ 0.6 to 1.0),
where we can see that ug,/ug, approaches a value of
1. Here this trend physically represents a change in the
imbalance between the energy associated with turbulent
motions incident towards the boundary, which are in-
creasingly less energetic, relative to the energy of turbu-
lent motions moving away from the boundary. Although
this is evidently a boundary effect, it appears that this
effect is not associated with splats and antisplats - recall
that in section V A we showed that the strongly deceler-
ating flow associated with splats and antisplats occurred
only over the region £/ds < 0.6. Instead this observation
is attributed to the effects of turbulent transport, due
to the blocking effect of the boundary on the boundary-
normal TKE flux,” which in isolation would act to result
in ug, = ug,. That is, the TKE flux acts to trans-
fer energy from energy-rich regions to energy-poor re-
gions, such that in isolation the blocking of the TKE flux
would act to give rise to constant values of v within the
boundary-affected region.” In this instance there would
be no imbalance, on average, between the energy associ-

ated with turbulent motions incident towards the bound-
ary and the energy of turbulent motions moving away
from the boundary.

Figure 5(a-c) further indicate that an imbalance in
ugQ, and ug, is re-established as the boundary is further
approached, where ug,(¢r = 0) > ug,(¢r = 0) and
the ratio ug, /ug, continues to decrease over the region
0.3 < ¢/6s < 0.6. Hence, over this finite region the av-
erage energy associated with turbulent motions moving
away from the boundary exceeds that of the energy of
turbulent motions incident towards the boundary. There
are two likely explanations for this trend: (i) there is a
net intercomponent energy transfer from w? to u® asso-
ciated with splats and antisplats over this region, or (ii)
there is production and advection of TKE by the mean
flow over this region. We note that the current results do
depart from the zero-mean-shear condition and, there-
fore, effect (ii) is likely to contribute to the observed
results. However, that ug, > ug, over specifically the
region 0.3 < £/ds < 0.6 is significant; recall that it was
over this region that we observed significant increases in
the normalised vertical strain rate (£, /w)ou}/0xs (see



figure 4), which was indicative of splats and antisplats in
which intercomponent energy transfer is concentrated.®*
In addition, measurements of production and advection
of TKE by the mean flow shown in figure 2 (terms ®1;
and A¢,) indicate that mean flow effects are relatively
small over this region.

We stress that the effect of splats and antisplats is iso-
lated when ¢ = 6 and is shown in figure 5(d), which
also indicates that ug, > ug, over 0.3 < &/6, < 0.6
and that the ratio ug, /ug, also decreases over this re-
gion. Although not shown, we note that over the re-
gion 0.3 < &/, < 0.6 the ratio ug,/ug, gradually de-
creases as ¢ is increased from 0 to 6, which we equate
as being equivalent to gradually filtering out those mo-
tions that do not feel the inhibiting effects of the bound-
ary. That this effect becomes more pronounced as ¢
increases cannot be attributed to mean flow effects (ef-
fect (ii) above), but instead is consistent with a net in-
tercomponent energy transfer from w? to u? associated
with splats and antisplats (effect (i) above) over the re-
gion 0.3 < &/ds < 0.6. Hence, we conclude not only that
there is an energy transfer from w? to u? associated with
splats and antisplats over this region (which can only be
isolated by use of the condition ¢ = 6), but that this
energy transfer is largely able to dominate any weak ad-
ditional contribution from the random turbulent fluctu-
ations (characterised by |(€,,/w)dul/dz3| < 6) that are
included within the conditional statistics when ¢r < 6.
However, we note that a limitation of this analysis is that
we are unable to derive insight into the precise dynamics
that give rise to the observed splat antisplat disequilib-
rium and the associated intercomponent energy transfer
over the region 0.3 < ¢/6s < 0.6

We stress that the observations over the region 0.3 <
&/0s < 0.6 are in contrast to the model of intercomponent
energy transfer proposed by Perot and Moin 3, in which
the intercomponent energy transfer describes a dissipa-
tive effect whereby the average energy of splats exceeds
that of antisplats. However, note that significant changes
in ug, and ug, occur closer to the boundary; figure 5
indicates that ug, /ug, increases over /0, < 0.3, irre-
spective of the value of ¢r. That this trend occurs over
&/0s < 0.3 is significant; recall that in the current ex-
periments this is the approximate viscous sublayer thick-
ness within which significant dissipation of TKE occurs.”
These results physically indicate that, over this region,
the energy associated with wju} of motions incident to-
wards the boundary (splats) increases relative to and ul-
timately exceeds that of motions moving away from the
boundary (antisplats). Hence, these measurements in-
dicate that within a thin layer, approximately equal in
thickness to the viscous sublayer, result are consistent
with the model of Perot and Moin?, in which the im-
balance between splats and antisplats is governed by the
dissipation of TKE.
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VI. DISCUSSION AND CONCLUSIONS

New results from an experimental study of the inter-
action between oscillating-grid turbulence and a solid
boundary (positioned below and aligned parallel to the
grid) have been presented which investigate the nature
of the intercomponent energy transfer (described by the
pressure-strain correlation IIf;) that occurs within the
boundary-affected region of the flow (£/ds < 1). Within
a region approximately equal in thickness to the vis-
cous sublayer, estimates of the pressure-strain correlation
II7; indicate that an intercomponent energy transfer oc-
curs from the boundary-normal to the boundary tangen-
tial turbulent velocity components and which promotes
anisotropy. Estimates of conditional turbulent statis-
tics also indicate that, within the region £/§, < 0.3,
intercomponent energy transfer is associated with splat-
antisplat disequilibrium, whereby turbulent motions inci-
dent towards the boundary are more energetic than mo-
tions away, which are characteristics of an intercompo-
nent energy transfer primarily driven by the dissipation
of TKE.?

Estimates of II}; are shown to reduce outside the vis-
cous sublayer, but continue to indicate a (much reduced)
intercomponent energy transfer from the boundary-
normal to the boundary-tangential velocity components
(which also promotes anisotropy) over the region 0.3 <
£/0s < 0.6. In section III we noted that similar
data can be found in previous studies of the interac-
tion of zero-mean-shear turbulence with an imperme-
able boundary,®* although the results have not previ-
ously received comment. Estimates of energy spectra
(section IV) were also consistent with a weak net in-
tercomponent energy transfer from the boundary-normal
to the boundary-tangential velocity components at large
spatial scales; similar observations have previously been
reported?%1415 which has been attributed to the effects
of turbulent eddies as they impinge into a boundary (i.e
splats).!* However, results indicate this is not a traceless
energy transfer between the velocity components; some
TKE is lost due to increases in the energy associated
with the mean dynamic pressure within the boundary-
affected region. Furthermore, estimates of conditional
statistics associated with splats and antisplats indicate
that over this region (0.3 < ¢/6s < 0.6) the magnitude of
the boundary-tangential turbulent velocity components
of antisplats exceeds that of splats. Thus this splat-
antisplat disequilibrium is indicative of a weak net in-
tercomponent energy transfer from the boundary-normal
velocity component to the boundary-tangential velocity
components, but which is not consistent with the viscous
dissipative model of energy transfer proposed by Perot
and Moin® (that was prevalent in the viscous sublayer).

Instead, at first glance this energy transfer appears
to be approximately in accordance with that proposed
by Hunt and Graham? for the interaction of zero-mean-
shear turbulence and a solid boundary. However, whilst
these results share the same basic interpretation (i.e. net



energy transfer from w? to uQ)7 the current results are
not consistent with the model proposed by Hunt and
Graham?. That is, Hunt and Graham? proposed that
significant intercomponent energy transfer should occur
only sufficiently close to the boundary - over the region
£/0s < 0.3. However, here the finite Reynolds numbers
considered result in a thick viscous sublayer (of thick-
ness 6,/ds = 0.2 to 0.3, where ¢, denotes the thickness
of the viscous sublayer), such that the energy transfer
proposed by Hunt and Graham? would be inhibited by
viscous effects; recall that RDT is valid at the limit of
high Reynolds number or constant dissipation with dis-
tance above the boundary®* - neither of these conditions
are satisfied here.

Bodart, Cazalbou, and Joly* also proposed that a
net intercomponent energy transfer from the boundary-
normal to the boundary-tangential turbulent velocity
components should occur and that the intensity of
the energy transfer should increase as the skewness
(ufubul/w?) of flow increases. Bodart, Cazalbou, and
Joly* acknowledge the role of viscosity in acting to in-
crease the skewness of the flow close to the boundary,
but argue that the imbalance in energy of splats and an-
tisplats is set primarily by the skewness of the original
velocity fields. However, a physical model consistent with
the intercomponent energy transfer proposed by Bodart,
Cazalbou, and Joly* has yet to be proposed. Evidently,
a large skewness associated with anisotropic flow outside
the boundary-affected region (such as that reported in
OGTT) does describe an imbalance in the energy of tur-
bulent motions, but it is our interpretation that this can-
not be used as a direct measure of splat-antisplat imbal-
ance (by which, recall, we refer to specifically turbulent
motions that form stagnation flow as a result of bound-
ary effects) within the boundary-affected region. That
is, the blocking effect of the boundary on turbulent en-
ergy fluxes associated with such anisotropic flows has a
significant effect on the imbalance of energy associated
with turbulent motions inside the boundary-affected re-
gion, described by the correlation coefficients ujuju} /w?
and ufuju) /wu?, which is not associated with intercom-
ponent energy transfer.” Indeed, despite the far-field flow
here being anisotropic, the analysis of section V indicates
splat-antisplat imbalance is actually small at the edge of
the region in which we are able to identify splats and an-
tisplats, and the imbalance only becomes significant for
&/0s < 0.5. Hence it appears that the current results
over this region (i.e. just outside the viscous sublayer
£/0s = 0.3 to 0.6) identify a feature not captured within
current key models of intercomponent energy transfer at
a boundary.

A limitation in our analysis is that it does not iden-
tify an underlying physical mechanism to explain the
observed intercomponent energy transfer over this re-
gion. However, so far our discussion of antisplats has
focussed on regions in which the fluid ejects away from
the boundary as a result of high pressure collisions of el-
ements travelling tangential to the boundary.? In reality,
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antisplats can also form without significant increases in
pressure due to the interaction of two regions of oppo-
site vorticity when a splat approaches a boundary; so-
called self-generation mechanisms.*?8 That is, as a splat
is blocked by the boundary, the no-slip conditions results
in instantaneous shear and the vorticity associated with
this shear acts to eject fluid away from the boundary.
[To clarify, low pressure antisplat formation appears, in
concept, similar to the process of vortex ring rebound
at a solid impermeable boundary.??31] We stress that
these events have been reported to give rise to a not-
insignificant contribution to the time-averaged measure-
ments of the pressure-strain term.* However, these events
are not currently incorporated into key models of inter-
component energy transfer since their influence on this
process is poorly understood due to their complicated
dynamics. Indeed, Perot and Moin?® explicitly note that
the more complicated dynamics arising in this interaction
are not considered in their model in which splats and an-
tisplats arise as simple consequences of the equation of
continuity. As a result, we conjecture that these events
may be a contributing factor to the weak net intercom-
ponent energy transfer observed here.

This observed net intercomponent energy transfer from
w? to u? also has implications for our understanding of
the ‘return-to-isotropy’ model of intercomponent energy
transfer; recall that Walker, Leighton, and Garza-Rios '3
proposed that the anisotropy induced by the kinematic
blocking condition acting on w? would give rise a ‘return-
to-isotropy’ intercomponent energy transfer from u? to
w?. This mechanism is thought to be impeded within
the viscous sublayer as a result of the prevalent viscous
effects in this region.?” The current results further imply
that this mechanism is impeded over a thin region even
outside the viscous sublayer (in this study over the region
0.3 <¢/d6s < 0.6). Nevertheless, previous measurements
of II{ illustrate that this mechanism is prevalent at the
edge of the boundary-affected region in the interaction of
OGT with an impermeable boundary” and in the interac-
tion of zero-mean-shear turbulence with an impermeable
boundary.349
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