97 research outputs found

    Transforming growth factor-ÎÂČ signaling in thymic epithelial cells : its role in development, steady-state and immune reconstitution

    Get PDF
    The thymus constitutes the primary lymphoid organ responsible for the generation of naïve T cells. Its stromal compartment is composed of a scaffold of different subsets of epithelial cells that provide soluble and membrane-bound molecules essential for thymocyte maturation and selection. With senescence, a steady decline in the thymic output of T cells has been observed. Numeric and qualitative changes in the stromal compartment of the thymus resulting in reduced thymopoietic capacity have been suggested to account for this physiological process. The precise cellular and molecular mechanisms underlying thymic senescence are, however, only incompletely understood. Here, we demonstrate that TGF-beta signaling in thymic epithelial cells exerts a direct influence on the cell’s capacity to support thymopoiesis in the aged mouse as the physiological process of thymic senescence is mitigated in mice deficient for the expression of TGF-beta receptor type II on thymic epithelial cells. Moreover, TGF-beta signaling in these stromal cells transiently hinders the early phase of thymic reconstitution following myeloablative conditioning and hematopoietic stem cell transplantation. Hence, inhibition of TGF-beta signaling decelerates the process of age-related thymic involution and may hasten the reconstitution of regular thymopoiesis following hematopoietic stem cell transplantation

    Angeborene Immundefekte mit vorwiegender Störung der Antikörperproduktion

    Full text link
    Angeborene Immundefekte, welche ĂŒberwiegend mit einer quantitativ oder funktionell eingeschrĂ€nkten Antikörperantwort einhergehen (Antikörperdefekte), zĂ€hlen zu den hĂ€ufigsten Formen primĂ€rer Immundefizienz mit einer geschĂ€tzten Inzidenz zwischen 1:400 und 1:100.000. GemĂ€ĂŸ der aktualisierten Klassifizierung der IUIS (International Union of Immunological Societies) werden diese Störungen in 4 verschiedenen Untergruppen eingeteilt, basierend v. a. auf der AusprĂ€gung des Antikörpermangels sowie nummerischer VerĂ€nderungen der B-Zellen. Antikörper-Defekte sind durch Störungen der B-Zell-Entwicklung im Knochenmark bzw. durch EinschrĂ€nkung der Proliferation, Differenzierung oder Ausreifung von B-Zellen verursacht. Patienten mit Antikörperdefekten leiden typischerweise unter rezidivierenden Infektionen, welche in der Regel durch (kapseltragende) Bakterien, wie z. B. H. influenzae oder S. pneumoniae, verursacht werden. Charakteristischerweise kommt es bei betroffenen Patienten zu sogenannten Schleimhaut-assoziierten Infektionen, wie Otitiden, Pneumonien und bei Ă€lteren Patienten auch Sinusitiden. Die Therapie besteht in einer frĂŒhzeitigen und konsequenten Therapie von Infektionen und bei schweren Verlaufsformen in der regelmĂ€ĂŸigen prophylaktischen Gabe von intravenös oder subkutan verabreichten Immunglobulinen vom Typ G (IgG)

    Too much of too little: xylitol, an unusual trigger of a chronic metabolic hyperchloremic acidosis

    Get PDF
    Homeopathic globules are frequently used in children as a first-line treatment. Most of these globules are coated with sugar substitutes like xylitol; these substitutes are known for their laxative effect. Our patient shows that consumption of globules coated with xylitol does not have only laxative effects. It may cause indeed considerable weight loss and life-threatening enteral bicarbonate loss by diarrhea when overdosed in an infan

    Pharmacological inhibition of sodium-proton-exchanger subtype 3-mediated sodium absorption in the gut reduces atrial fibrillation susceptibility in obese spontaneously hypertensive rats

    Get PDF
    Background: Increased sodium uptake has been shown to contribute to hypertension and cardiac endorgan damage. The sodium-proton-exchanger subtype 3 (NHE3) is an important mediator of intestinal sodium absorption. Whether a reduction in intestinal sodium absorption can prevent the development of an atrial arrhythmogenic substrate in hypertension is unknown. Methods: Eight-week-old obese spontaneously hypertensive rats (SHR-ob) were treated for six weeks with the gut-specific NHE3-inhibitor SAR (1-(beta-D-glucopyranosyl)-3-{3-[(4S)-6,8-dichloro-2-methyl-1, 2,3,4-tetrahydroiso-chinolin-4-yl]phenyl}urea, 1 mg/kg/d in chow, SHR-ob SAR, n = 7) and compared to aged-matched placebo-treated SHR-ob (SHR-ob PLAC, n = 8). Cardiac magnetic resonance imaging was performed at the end of the treatment period to assess atrial emptying function. Afterwards, local conduction disturbances and inducible atrial fibrillation (AF) duration were determined and histological analysis to quantify atrial fibrosis amount were performed. Results: Inhibition of intestinal NHE3 by SAR increased fecal sodium excretion, resulted in marked changes in feces electrolyte concentrations and water content, reduced blood pressure and preserved atrial emptying function (active total percent emptying: SHR-ob SAR: 0.47 +/- 0.05% vs. SHR-ob PLAC: 0.38 +/- 0.007, p <0.0001). Atrial fibrosis content was lower (21.4 +/- 2.5% vs. 36.7 +/- 1.2%, p <0.0001) and areas of slow conduction were smaller (2.5 +/- 0.09% vs. 5.3 +/- 0.2%, p <0.0001) in SHR-ob SAR compared to SHR-ob PLAC. Left atrial burst stimulation resulted in shorter inducible AF-durations in SHR-ob SAR compared to SHR-ob PLAC. Conclusions: Reduction of intestinal sodium absorption and subsequent changes in feces milieu by pharmacological NHE3 inhibition in the gut preserved atrial emptying function and reduced AF susceptibility. Whether pharmacological NHE3 inhibition in the gut prevents AF in humans warrants further study. (C) 2020 The Authors. Published by Elsevier B.V

    Small Things Matter: Relevance of MicroRNAs in Cardiovascular Disease

    Get PDF
    MicroRNAs (miRNAs) are short sequences of non-coding RNA that play an important role in the regulation of gene expression and thereby in many physiological and pathological processes. Furthermore, miRNAs are released in the extracellular space, for example in vesicles, and are detectable in various biological fluids, such as serum, plasma, and urine. Over the last years, it has been shown that miRNAs are crucial in the development of several cardiovascular diseases (CVDs). This review discusses the (patho)physiological implications of miRNAs in CVD, ranging from cardiovascular risk factors (i.e., hypertension, diabetes, dyslipidemia), to atherosclerosis, myocardial infarction, and cardiac remodeling. Moreover, the intriguing possibility of their use as disease-specific diagnostic and prognostic biomarkers for human CVDs will be discussed in detail. Finally, as several approaches have been developed to alter miRNA expression and function (i.e., mimics, antagomirs, and target-site blockers), we will highlight the miRNAs with the most promising therapeutic potential that may represent suitable candidates for therapeutic intervention in future translational studies and ultimately in clinical trials. All in all, this review gives a comprehensive overview of the most relevant miRNAs in CVD and discusses their potential use as biomarkers and even therapeutic targets

    Renal denervation reduces atrial remodeling in hypertensive rats with metabolic syndrome

    Get PDF
    Atrial fibrillation (AF) is highly prevalent in hypertensive patients with metabolic syndrome and is related to inflammation and activation of the sympathoadrenergic system. The multi-ligand Receptor-for-Advanced-Glycation-End-products (RAGE) activates inflammation-associated tissue remodeling and is regulated by the sympathetic nervous system. Its counterpart, soluble RAGE (sRAGE), serves as anti-inflammatory decoy receptor with protective properties. We investigated the effect of sympathetic modulation by renal denervation (RDN) on atrial remodeling, RAGE/sRAGE and RAGE ligands in metabolic syndrome. RDN was performed in spontaneously hypertensive obese rats (SHRob) with metabolic syndrome compared with lean spontaneously hypertensive rats (SHR) and with normotensive non-obese control rats. Blood pressure and heart rate were measured by telemetry. The animals were killed 12 weeks after RDN. Left atrial (LA) and right atrial (RA) remodeling was assessed by histological analysis and collagen types. Sympathetic innervation was measured by tyrosine hydroxylase staining of atrial nerve fibers, RAGE/sRAGE, RAGE ligands, cytokine expressions and inflammatory infiltrates were analyzed by Western blot and immunofluorescence staining. LA sympathetic nerve fiber density was higher in SHRob (+44%) versus controls and reduced after RDN (-64% versus SHRob). RAGE was increased (+718%) and sRAGE decreased (− 62%) in SHRob as compared with controls. RDN reduced RAGE expression (− 61% versus SHRob), significantly increased sRAGE levels (+162%) and induced a significant decrease in RAGE ligand levels in SHRob (− 57% CML and − 51% HMGB1) with reduced pro-inflammatory NFkB activation (− 96%), IL-6 production (− 55%) and reduced inflammatory infiltrates. This led to a reduction in atrial fibrosis (− 33%), collagen type I content (− 72%), accompanied by reduced LA myocyte hypertrophy (− 21%). Transfection experiments on H9C2 cardiomyoblasts demonstrated that RAGE is directly involved in fibrosis formation by influencing cellular production of collagen type I. In conclusion, suppression of renal sympathetic nerve activity by RDN prevents atrial remodeling in metabolic syndrome by reducing atrial sympathetic innervation and by modulating RAGE/sRAGE balance and reducing pro-inflammatory and pro-fibrotic RAGE ligands, which provides a potential therapeutic mechanism to reduce the development of AF

    Fibroblast Growth Factor 21 Response in a Preclinical Alcohol Model of Acute-on-Chronic Liver Injury

    Get PDF
    Background and Aims: Fibroblast growth factor (FGF) 21 has recently been shown to play a potential role in bile acid metabolism. We aimed to investigate the FGF21 response in an ethanol-induced acute-on-chronic liver injury (ACLI) model in Abcb4−/− mice with deficiency of the hepatobiliary phospholipid transporter. Methods: Total RNA was extracted from wild-type (WT, C57BL/6J) and Abcb4−/ − (KO) mice, which were either fed a control diet (WT-Cont and KO-Cont groups; n = 28/group) or ethanol diet, followed by an acute ethanol binge (WT-EtOH and KOEtOH groups; n = 28/group). A total of 58 human subjects were recruited into the study, including patients with alcohol-associated liver disease (AALD; n = 31) and healthy controls (n = 27). The hepatic and ileal expressions of genes involved in bile acid metabolism, plasma FGF levels, and bile acid and its precursors 7α- and 27-hydroxycholesterol (7α- and 27-OHC) concentrations were determined. Primary mouse hepatocytes were isolated for cell culture experiments. Results: Alcohol feeding significantly induced plasma FGF21 and decreased hepatic Cyp7a1 levels. Hepatic expression levels of Fibroblast growth factor receptor 1 (Fgfr1), Fgfr4, Farnesoid X-activated receptor (Fxr), and Small heterodimer partner (Shp) and plasma FGF15/FGF19 levels did not differ with alcohol challenge. Exogenous FGF21 treatment suppressed Cyp7a1 in a dose-dependent manner in vitro. AALD patients showed markedly higher FGF21 and lower 7α-OHC plasma levels while FGF19 did not differ. Conclusions: The simultaneous upregulation of FGF21 and downregulation of Cyp7a1 expressions upon chronic plus binge alcohol feeding together with the invariant plasma FGF15 and hepatic Shp and Fxr levels suggest the presence of a direct regulatory mechanism of FGF21 on bile acid homeostasis through inhibition of CYP7A1 by an FGF15-independent pathway in this ACLI model. Lay Summary: Alcohol challenge results in the upregulation of FGF21 and repression of Cyp7a1 expressions while circulating FGF15 and hepatic Shp and Fxr levels remain constant both in healthy and pre-injured livers, suggesting the presence of an alternative FGF15-independent regulatory mechanism of FGF21 on bile acid homeostasis through the inhibition of Cyp7a1