26,807 research outputs found

    Book Reviews

    Get PDF

    Second-Order Sensitivity in Applied General Equilibrium

    Get PDF
    In most policy applications of general equilibrium modeling, cost functions are calibrated to benchmark data. Modelers often choose the functional form for cost functions based on suitability for numerical solution of the model. The data (including elasticities of substitution) determine first and second order derivatives (local behavior) of the cost functions at the benchmark. The functional form implicitly defines third and higher order derivatives (global behavior). In the absence of substantial analytic and computational effort, it is hard to assess the extent to which results of a particular model depend on third and higher order derivatives. Assuming that a modeler has no (or weak) empirical foundation for her choice of functional form in a model, it is therefore a priori unclear to what extent her results are driven by this choice. I present a method for performing second-order sensitivity analysis of modeling results with respect to functional form. As an illustration of this method I examine three general equilibrium models from the literature and demonstrate the extent to which results depend on functional form. The outcomes suggest that modeling results typically do not depend on the functional form for comparative static policy experiments in models with constant returns to scale. This is in contrast to an example with increasing returns to scale and an endogenous steady-state capital stock. Here results move far from benchmark equilibrium and significantly depend on the choice of functional form.sensitivity analysis, out-of-sample behavior, CGE models, flexible functional forms

    The State of the Great Central Valley -- The Environment

    Get PDF
    Part of a series that provides various quality of life indicators for California's Central Valley. Includes data on air quality, water, and land use. Highlights successful efforts that combine goals of economic growth and environmental stewardship

    Ultra-thin, light-trapping silicon solar cells

    Get PDF
    Design concepts for ultra-thin (2 to 10 microns) high efficiency single-crystal silicon cells are discussed. Light trapping allows more light to be absorbed at a given thickness, or allows thinner cells of a given Jsc. Extremely thin cells require low surface recombination velocity at both surfaces, including the ohmic contacts. Reduction of surface recombination by growth of heterojunctions of ZnS and GaP on Si has been demonstrated. The effects of these improvements on AM0 efficiency is shown. The peak efficiency increases, and the optimum thickness decreases. Cells under 10 microns thickness can retain almost optimum power. The increase of absorptance due to light trapping is considered. This is not a problem if the light-trapping cells are sufficiently thin. Ultra-thin cells have high radiation tolerance. A 2 microns thick light-trapping cell remains over 18 percent efficient after the equivalent of 20 years in geosynchronous orbit. Including a 50 microns thick coverglass, the thin cells had specific power after irradiation over ten times higher than the baseline design

    Space station common module power system network topology and hardware development

    Get PDF
    Candidate power system newtork topologies for the space station common module are defined and developed and the necessary hardware for test and evaluation is provided. Martin Marietta's approach to performing the proposed program is presented. Performance of the tasks described will assure systematic development and evaluation of program results, and will provide the necessary management tools, visibility, and control techniques for performance assessment. The plan is submitted in accordance with the data requirements given and includes a comprehensive task logic flow diagram, time phased manpower requirements, a program milestone schedule, and detailed descriptions of each program task

    Solar power for the lunar night

    Get PDF
    Providing power over the 354 hour lunar night provides a considerable challenge to solar power concepts for a moonbase. Concepts are reviewed for providing night power for a solar powered moonbase. The categories of solutions considered are electrical storage, physical storage, transmitted power, and innovative concepts. Electrical storage is the most well-developed option. Less developed electrical storage options are capacitors and superconducting inductors. Physical storage options include storage of potential energy and storage of energy in flywheels. Thermal storage has potentially high energy/weight, but problems of conduction and radiation losses during the night need to be addressed. Transmitted power considers use of microwave or laser beams to transmit power either from orbit or directly from the Earth. Finally, innovative concepts proposed include reflecting light from orbital mirrors, locating the moonbase at a lunar pole, converting reflected Earthlight, or moving the moonbase to follow the sun

    Space power by laser illumination of PV arrays

    Get PDF
    There has recently been a resurgence of interest in the use of beamed power to support space exploration activities. The utility is examined of photovoltaics and problem and research areas are identified for photovoltaics in two beamed-power applications: to convert incident laser radiation to power at a remote receiving station, and as a primary power source on space based power station transmitting power to a remote user. A particular application of recent interest is to use a ground-based free electron laser as a power source for space applications. Specific applications include: night power for a moonbase by laser illumination of the moonbase solar arrays; use of a laser to provide power for satellites in medium and geosynchronous Earth orbit, and a laser powered system for an electrical propulsion orbital transfer vehicle. These and other applications are currently being investigated at NASA Lewis as part of a new program to demonstrate the feasibility of laser transmission of power for space

    Review of thin film solar cell technology and applications for ultra-light spacecraft solar arrays

    Get PDF
    Developments in thin-film amorphous and polycrystalline photovoltaic cells are reviewed and discussed with a view to potential applications in space. Two important figures of merit are discussed: efficiency (i.e., what fraction of the incident solar energy is converted to electricity), and specific power (power to weight ratio)

    Attitude determination using vector observations: A fast optimal matrix algorithm

    Get PDF
    The attitude matrix minimizing Wahba's loss function is computed directly by a method that is competitive with the fastest known algorithm for finding this optimal estimate. The method also provides an estimate of the attitude error covariance matrix. Analysis of the special case of two vector observations identifies those cases for which the TRIAD or algebraic method minimizes Wahba's loss function
    • …
    corecore