86 research outputs found

    Knowledge-Based Support for Software Engineering

    Full text link

    Decision-Making Ontology for Information System Engineering

    No full text
    International audienceInformation Systems (IS) engineering (ISE) processes contain steps where decisions must be made. Moreover, the growing role of IS in organizations involves requirements for ISE such as quality, cost and time. Considering these aspects implies that the number of researches dealing with decision-making (DM) in ISE increasingly grows. As DM becomes widespread in the ISE field, it is necessary to build a representation, shared between researchers and practitioners, of DM concepts and their relations with DM problems in ISE. In this paper, we present a DM ontology which aims at formalizing DM knowledge. Its goal is to enhance DM and to support DM activities in ISE. This ontology is illustrated within the requirements engineering field

    The ART-XC telescope on board the SRG observatory

    Full text link
    ART-XC (Astronomical Roentgen Telescope - X-ray Concentrator) is the hard X-ray instrument with grazing incidence imaging optics on board the Spektr-Roentgen-Gamma (SRG) observatory. The SRG observatory is the flagship astrophysical mission of the Russian Federal Space Program, which was successively launched into orbit around the second Lagrangian point (L2) of the Earth-Sun system with a Proton rocket from the Baikonur cosmodrome on 13 July 2019. The ART-XC telescope will provide the first ever true imaging all-sky survey performed with grazing incidence optics in the 4-30 keV energy band and will obtain the deepest and sharpest map of the sky in the energy range of 4-12 keV. Observations performed during the early calibration and performance verification phase as well as during the on-going all-sky survey that started on 12 Dec. 2019 have demonstrated that the in-flight characteristics of the ART-XC telescope are very close to expectations based on the results of ground calibrations. Upon completion of its 4-year all-sky survey, ART-XC is expected to detect ~5000 sources (~3000 active galactic nuclei, including heavily obscured ones, several hundred clusters of galaxies, ~1000 cataclysmic variables and other Galactic sources), and to provide a high-quality map of the Galactic background emission in the 4-12 keV energy band. ART-XC is also well suited for discovering transient X-ray sources. In this paper, we describe the telescope, results of its ground calibrations, major aspects of the mission, the in-flight performance of ART-XC and first scientific results.Comment: 19 pages, 30 figures, accepted for publication in Astronomy and Astrophysic

    The eROSITA X-ray telescope on SRG

    Get PDF
    eROSITA (extended ROentgen Survey with an Imaging Telescope Array) is the primary instrument on the Spectrum-Roentgen-Gamma (SRG) mission, which was successfully launched on July 13, 2019, from the Baikonour cosmodrome. After the commissioning of the instrument and a subsequent calibration and performance verification phase, eROSITA started a survey of the entire sky on December 13, 2019. By the end of 2023, eight complete scans of the celestial sphere will have been performed, each lasting six months. At the end of this program, the eROSITA all-sky survey in the soft X-ray band (0.2-2.3 keV) will be about 25 times more sensitive than the ROSAT All-Sky Survey, while in the hard band (2.3-8 keV) it will provide the first ever true imaging survey of the sky. The eROSITA design driving science is the detection of large samples of galaxy clusters up to redshifts z > 1 in order to study the large-scale structure of the universe and test cosmological models including Dark Energy. In addition, eROSITA is expected to yield a sample of a few million AGNs, including obscured objects, revolutionizing our view of the evolution of supermassive black holes. The survey will also provide new insights into a wide range of astrophysical phenomena, including X-ray binaries, active stars, and diffuse emission within the Galaxy. Results from early observations, some of which are presented here, confirm that the performance of the instrument is able to fulfil its scientific promise. With this paper, we aim to give a concise description of the instrument, its performance as measured on ground, its operation in space, and also the first results from in-orbit measurements
    corecore