60 research outputs found

    The EEE Project

    Get PDF
    The new experiment ``Extreme Energy Events'' (EEE) to detect extensive air showers through muon detection is starting in Italy. The use of particle detectors based on Multigap Resistive Plate Chambers (MRPC) will allow to determine with a very high accuracy the direction of the axis of cosmic ray showers initiated by primaries of ultra-high energy, together with a high temporal resolution. The installation of many of such 'telescopes' in numerous High Schools scattered all over the Italian territory will also allow to investigate coincidences between multiple primaries producing distant showers. Here we present the experimental apparatus and its tasks.Comment: 4 pages, 29th ICRC 2005, Pune, Indi

    DNS of vertical plane channel flow with finite-size particles: Voronoi analysis, acceleration statistics and particle-conditioned averaging

    Full text link
    We have performed a direct numerical simulation of dilute turbulent particulate flow in a vertical plane channel, fully resolving the phase interfaces. The flow conditions are the same as those in the main case of "Uhlmann, M., Phys. Fluids, vol. 20, 2008, 053305", with the exception of the computational domain length which has been doubled in the present study. The statistics of flow and particle motion are not significantly altered by the elongation of the domain. The large-scale columnar-like structures which had previously been identified do persist and they are still only marginally decorrelated in the prolonged domain. Voronoi analysis of the spatial particle distribution shows that the state of the dispersed phase can be characterized as slightly more ordered than random tending towards a homogeneous spatial distribution. It is also found that the p.d.f.'s of Lagrangian particle accelerations for wall-normal and spanwise directions follow a lognormal distribution as observed in previous experiments of homogeneous flows. The streamwise component deviates from this law presenting significant skewness. Finally, a statistical analysis of the flow in the near field around the particles reveals that particle wakes present two regions, a near wake where the velocity deficit decays as 1/x and a far wake with a decay of approximately 1/(x*x).Comment: accepted for publication in Int. J. Multiphase Flo

    Turbulent Diffusion and Turbulent Thermal Diffusion of Aerosols in Stratified Atmospheric Flows

    Full text link
    The paper analyzes the phenomenon of turbulent thermal diffusion in the Earth atmosphere, its relation to the turbulent diffusion and its potential impact on aerosol distribution. This phenomenon was predicted theoretically more than 10 years ago and detected recently in the laboratory experiments. This effect causes a non-diffusive flux of aerosols in the direction of the heat flux and results in formation of long-living aerosol layers in the vicinity of temperature inversions. We demonstrated that the theory of turbulent thermal diffusion explains the GOMOS aerosol observations near the tropopause (i.e., the observed shape of aerosol vertical profiles with elevated concentrations located almost symmetrically with respect to temperature profile). In combination with the derived expression for the dependence of the turbulent thermal diffusion ratio on the turbulent diffusion, these measurements yield an independent method for determining the coefficient of turbulent diffusion at the tropopause. We evaluated the impact of turbulent thermal diffusion to the lower-troposphere vertical profiles of aerosol concentration by means of numerical dispersion modelling, and found a regular upward forcing of aerosols with coarse particles affected stronger than fine aerosols.Comment: 19 pages, 10 figure
    • …
    corecore