138 research outputs found

    A thermodynamic counterpart of the Axelrod model of social influence: The one-dimensional case

    Get PDF
    We propose a thermodynamic version of the Axelrod model of social influence. In one-dimensional (1D) lattices, the thermodynamic model becomes a coupled Potts model with a bonding interaction that increases with the site matching traits. We analytically calculate thermodynamic and critical properties for a 1D system and show that an order-disorder phase transition only occurs at T = 0 independent of the number of cultural traits q and features F. The 1D thermodynamic Axelrod model belongs to the same universality class of the Ising and Potts models, notwithstanding the increase of the internal dimension of the local degree of freedom and the state-dependent bonding interaction. We suggest a unifying proposal to compare exponents across different discrete 1D models. The comparison with our Hamiltonian description reveals that in the thermodynamic limit the original out-of-equilibrium 1D Axelrod model with noise behaves like an ordinary thermodynamic 1D interacting particle system.Comment: 19 pages, 5 figure

    Spin triplet superconductivity in Sr2RuO4

    Full text link
    Sr2RuO4 is at present the best candidate for being a superconducting analogue of the triplet superfluidity in ^3He. This material is a good (albeit correlated) Fermi liquid in the normal state and an exotic superconductor below Tc. The mechanism of superconductivity and symmetry of the order parameter are the main puzzling issues of on-going research. Here we present the results of our search for a viable description of the superconducting state realised in this material. Our calculations are based on a three-dimensional effective three-band model with a realistic band structure. We have found a state with non-zero order parameter on each of the three sheets of the Fermi surface. The corresponding gap in the quasi-particle spectrum has line or point nodes on the alpha and beta sheets and is complex with no nodes on the gamma sheet. This state describes remarkably well a number of existing experiments including power low temperature dependence of the specific heat, penetration depth, thermal conductivity etc. The stability of the state with respect to disorder and different interaction parameters are also analyzed briefly.Comment: 8 pages, 5 figures (to appear in Physica Status Solidi A

    Fulde-Ferrel-Larkin-Ovchinnikov State due to Antisymmetric Spin-Orbit-Coupling in Noncentrosymmetric Superconductivity CePt3_3Si

    Full text link
    When the inversion symmetry is broken, the spin-orbit coupling reduces the transition temperature of some types of spin triplet superconductivity, which is similar to the case that magnetic field reduces the spin singlet superconductivity due to Zeeman splitting. It is well known that Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) state of spin singlet superconductivity is realized near the Pauli limit (or Chandrasekhar-Clogston limit) of external magnetic field. In FFLO state the amplitude of the order parameter is not uniform in space. In this paper we study the FFLO state in the spin triplet superconductivity in the absence of magnetic field due to the spin-orbit coupling. Although the FFLO state is not realized in the simple model with spherical Fermi surface, it will be stabilized if some condition is favorable for it. We discuss the possibility of FFLO state in CePt3_3Si in the absence of external magnetic field.Comment: 2 pages, 1 figure, M2S-HTSC VII

    Cluster size entropy in the Axelrod model of social influence: small-world networks and mass media

    Full text link
    We study the Axelrod's cultural adaptation model using the concept of cluster size entropy, ScS_{c} that gives information on the variability of the cultural cluster size present in the system. Using networks of different topologies, from regular to random, we find that the critical point of the well-known nonequilibrium monocultural-multicultural (order-disorder) transition of the Axelrod model is unambiguously given by the maximum of the Sc(q)S_{c}(q) distributions. The width of the cluster entropy distributions can be used to qualitatively determine whether the transition is first- or second-order. By scaling the cluster entropy distributions we were able to obtain a relationship between the critical cultural trait qcq_c and the number FF of cultural features in regular networks. We also analyze the effect of the mass media (external field) on social systems within the Axelrod model in a square network. We find a new partially ordered phase whose largest cultural cluster is not aligned with the external field, in contrast with a recent suggestion that this type of phase cannot be formed in regular networks. We draw a new q−Bq-B phase diagram for the Axelrod model in regular networks.Comment: 21 pages, 7 figure
    • …
    corecore