1,829 research outputs found

    Rigorously computing symmetric stationary states of the Ohta-Kawasaki problem in three dimensions

    Get PDF
    In this paper we develop a symmetry preserving method for the rigorous computation of stationary states of the Ohta-Kawasaki partial differential equation in three space dimensions. By preserving the relevant symmetries we achieve an enormous reduction in computational cost. This makes it feasible to construct computer-assisted proofs of complex three-dimensional structures. In particular, we provide the first existence proofs for both the double gyroid and body centered cubic packed sphere solutions to this problem

    Optimal Control for Wind Turbine Wake Mixing on Floating Platforms

    Full text link
    Dynamic induction control is a wind farm flow control strategy that utilises wind turbine thrust variations to accelerate breakdown of the aerodynamic wake and improve downstream turbine performance. However, when floating wind turbines are considered, additional dynamics and challenges appear that make optimal control difficult. In this work, we propose an adjoint optimisation framework for non-linear economic model-predictive control, which utilises a novel coupling of an existing aerodynamic wake model to floating platform hydrodynamics. Analysis of the frequency response for the coupled model shows that it is possible to achieve wind turbine thrust variations without inducing large motion of the rotor. Using economic model-predictive control, we find dynamic induction results that lead to an improvement of 7% over static induction control, where the dynamic controller stimulates wake breakdown with only small variations in rotor displacement. This novel model formulation provides a starting point for the adaptation of dynamic wind farm flow control strategies for floating wind turbines.Comment: 6 pages, 8 figures, accepted for publication for IFAC World Congress 202

    Flash suppression and flash facilitation in binocular rivalry

    Get PDF
    We show that previewing one half image of a binocular rivalry pair can cause it to gain initial dominance when the other half is added, a novel phenomenon we term flash facilitation. This is the converse of a known effect called flash suppression, where the previewed image becomes suppressed upon rivalrous presentation. The exact effect of previewing an image depends on both the duration and the contrast of the prior stimulus. Brief, low-contrast prior stimuli facilitate, whereas long, high-contrast ones suppress. These effects have both an eye-based component and a pattern-based component. Our results suggest that, instead of reflecting two unrelated mechanisms, both facilitation and suppression are manifestations of a single process that occurs progressively during presentation of the prior stimulus. The distinction between the two phenomena would then lie in the extent to which the process has developed during prior stimulation. This view is consistent with a neural model previously proposed to account for perceptual stabilization of ambiguous stimuli, suggesting a relation between perceptual stabilization and the present phenomena

    Validated Numerical Approximation of Stable Manifolds for Parabolic Partial Differential Equations

    Get PDF
    This paper develops validated computational methods for studying infinite dimensional stable manifolds at equilibrium solutions of parabolic PDEs, synthesizing disparate errors resulting from numerical approximation. To construct our approximation, we decompose the stable manifold into three components: a finite dimensional slow component, a fast-but-finite dimensional component, and a strongly contracting infinite dimensional “tail”. We employ the parameterization method in a finite dimensional projection to approximate the slow-stable manifold, as well as the attached finite dimensional invariant vector bundles. This approximation provides a change of coordinates which largely removes the nonlinear terms in the slow stable directions. In this adapted coordinate system we apply the Lyapunov-Perron method, resulting in mathematically rigorous bounds on the approximation errors. As a result, we obtain significantly sharper bounds than would be obtained using only the linear approximation given by the eigendirections. As a concrete example we illustrate the technique for a 1D Swift-Hohenberg equation.</p

    Linear formulation for the Maximum Expected Coverage Location Model with fractional coverage

    Get PDF
    Since ambulance providers are responsible for life-saving medical care at the scene in emergency situations and since response times are important in these situations, it is crucial that ambulances are located in such a way that good coverage is provided throughout the region. Most models that are developed to determine good base locations assume strict 0-1 coverage given a fixed base location and demand point. However, multiple applications require fractional coverage. Examples include stochastic, instead of fixed, response times and survival probabilities. Straightforward adaption of the well-studied MEXCLP to allow for coverage probabilities results in a non-linear formulation in integer variables, limiting the size of instances that can be solved by the model. In this paper, we present a linear integer programming formulation for the problem. We show that the computation time of the linear formulation is significantly shorter than that for the non-linear formulation. As a consequence, we are able to solve larger instances. Finally, we will apply the model, in the setting of stochastic response times, to the region of Amsterdam, the Netherlands

    Anti-inflammatory actions of acupuncture.

    Get PDF
    Acupuncture has a beneficial effect when treating many diseases and painful conditions, and therefore is thought to be useful as a complementary therapy or to replace generally accepted pharmacological intervention. The attributive effect of acupuncture has been investigated in inflammatory diseases, including asthma, rhinitis, inflammatory bowel disease, rheumatoid arthritis, epicondylitis, complex regional pain syndrome type 1 and vasculitis. Large randomised trials demonstrating the immediate and sustained effect of acupuncture are missing. Mechanisms underlying the ascribed immunosuppressive actions of acupuncture are reviewed in this communication. The acupuncture-controlled release of neuropeptides from nerve endings and subsequent vasodilative and anti-inflammatory effects through calcitonine gene-related peptide is hypothesised. The complex interactions with substance P, the analgesic contribution of beta-endorphin and the balance between cell-specific pro-inflammatory and anti-inflammatory cytokines tumour necrosis factor-alpha and interleukin-10 are discussed

    Validation of automatic measurement of QT interval variability

    Get PDF
    Background Increased variability of beat-to-beat QT-interval durations on the electrocardiogram (ECG) has been associated with increased risk for fatal and non-fatal cardiac events. However, techniques for the measurement of QT variability (QTV) have not been validated since a gold standard is not available. In this study, we propose a validation method and illustrate its use for the validation of two automatic QTV measurement techniques. Methods Our method generates artificial standard 12-lead ECGs based on the averaged P-QRS-T complexes from a variety of existing ECG signals, with simulated intrinsic (QT interval) and extrinsic (noise, baseline wander, signal length) variations. We quantified QTV by a commonly used measure, short-term QT variability (STV). Using 28,800 simulated ECGs, we assessed the performance of a conventional QTV measurement algorithm, resembling a manual QTV measurement approach, and a more advanced algorithm based on fiducial segment averaging (FSA). Results The results for the conventional algorithm show considerable median absolute differences between the simulated and estimated STV. For the highest noise level, median differences were 4±6 ms in the absence of QTV. Increasing signal length generally yields more accurate STV estimates, but the difference in performance between 30 or 60 beats is small. The FSA algorithm proved to be very accurate, with most median absolute differences less than 0.5 ms, even for the highest levels of disturbance. Conclusions Artificially constructed ECGs with a variety of disturbances allow validation of QTV measurement procedures. The FSA algorithm provides highly accurate STV estimates under varying signal conditions, and performs much better than traditional beat-by-beat analysis. The fully automatic operation of the FSA algorithm enables STV measurement in large sets of ECGs
    corecore