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a b s t r a c t

Since ambulance providers are responsible for life-saving medical care at the scene in emergency situa-
tions and since response times are important in these situations, it is crucial that ambulances are located
in such a way that good coverage is provided throughout the region. Most models that are developed to
determine good base locations assume strict 0–1 coverage given a fixed base location and demand point.
However, multiple applications require fractional coverage. Examples include stochastic, instead of fixed,
response times and survival probabilities. Straightforward adaption of the well-studied MEXCLP to al-
low for coverage probabilities results in a non-linear formulation in integer variables, limiting the size of
instances that can be solved by the model. In this paper, we present a linear integer programming for-
mulation for the problem. We show that the computation time of the linear formulation is significantly
shorter than that for the non-linear formulation. As a consequence, we are able to solve larger instances.
Finally, we will apply the model, in the setting of stochastic response times, to the region of Amsterdam,
the Netherlands.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Ambulances play an important role in providing life-saving
health care in case of an emergency. Since time is limited in emer-
gency situations, it is critical that ambulance vehicles are located
so as to ensure good coverage and short response times. The re-
sponse time is defined as the time between the moment the call is
taken in the call center and the moment the ambulance arrives at
the scene of the incident. Inmost countries, regulations state that a
minimum fraction of calls should be reachedwithin a specified tar-
get response time. In the Netherlands, for example, an ambulance
should arrive at the patient within 15 min after the call is made in
95% of the cases.

Many models have been proposed to determine good locations
for ambulances. Among the first models were the Location Set
Covering Model (LSCM) and the Maximal Covering Location
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Problem (MCLP). LSCM, introduced by Toregas [1], computes the
minimum number of ambulances required to cover all demand
points within the target response time. Church and ReVelle [2]
developed MCLP for the case that the available capacity does not
suffice to cover all demand points. The model maximizes the
demand that can be covered, given the limited resources. Even
though these models are useful in many applications, two strong
assumptions are made.

First, the models assume that ambulances are always available
for dispatch, neglecting the fact that an ambulance might be
dispatched to another call. This observation resulted in numerous
models that consider backup coverage. Examples that require a
fixed number of ambulances to provide full coverage are Double
Standard Model (DSM) [3], Backup Coverage Problem (BACOP) [4]
and Maximum Availability Location Problem (MALP) [5]. The first
two require two ambulances to cover a demand point, while in
the last one this number depends on the average fraction of time
an ambulance is unavailable, called the busy fraction. A slightly
more realistic way of modeling ambulance availability uses the
concept of expected coverage, introduced by Daskin [6]. Here,
the busy fraction is used to estimate the probability of having at
least one available ambulance within the target response time.
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(a) Deterministic case. (b) Stochastic case.

Fig. 1. Representation of first example of difference between deterministic and stochastic case. A circle represents a demand point, a triangle represents a base station. The
numbers next to the triangles show the probability that the demand point can be reached within the time limit from the particular base.

Repede and Bernardo [7], Schmid and Doerner [8], and Van den
Berg and Aardal [9] extend DSM and MEXCLP to incorporate
variation in system characteristics throughout the day. Another
approach to account for ambulance availability is to use Stochastic
Programming techniques, see for example [10,11].

A second assumption in LSCM and MCLP is that the obtained
coverage by assigning a call to an available ambulance at a
particular base is either 0 or 1. In some applications, it would be
useful to relax this assumption and allow for fractional coverage.
We discuss twowell-studied examples: coverage probabilities and
survival probabilities.

Inmostmodels, it is assumed that the response time from a par-
ticular base to a particular demand point is fixed. Typically, this
is equal to the average travel time plus some fixed pre-trip de-
lay, where the pre-trip delay is the time elapsed before the am-
bulance starts driving. In practice, however, these response times
vary, due to traffic jams and weather conditions. At least two ways
of handling this uncertainty are used in literature. Koç and Bostan-
cioğlu [12] introduce a required reliability α, and say that a base
can cover a demand point only if the response time is within the
time threshold with probability at least α. This way, they have
again a 0 or 1 coverage and then they apply DSM. Another, more
common approach is to compute the coverage probability directly.
This approach is applied tomultiplemodels described earlier. Both
Daskin [13], and Karasakal [14] included the coverage probability
in MCLP. Marianov and ReVelle [15] adapted MALP so that it could
handle coverage probabilities. A version forMEXCLPwith coverage
probabilities was introduced by Goldberg et al. [16] and Goldberg
and Paz [17], for which they used heuristics to find approximate
solutions. Based on these two papers, Ingolfsson et al. [18] devel-
oped a non-linear variant of MEXCLP with coverage probabilities.
For small instances, typically with a fixed set of bases, the model
could be solved to optimality. However, the computation time in-
creases rapidly when the instance size increases. To determine the
coverage probabilities, they assumed that both the pre-trip delay
and the travel times are non-deterministic.

A second example of the usage of fractional coverage is the
concept of survival probabilities. Erkut et al. [19] argue that even
thoughmost EMS providers are assessed on coverage related crite-
ria, it is worth to consider performance measures related to health
outcomes. They introduce a version ofMEXCLP thatmaximizes the
survival probability of a patient rather than the expected cover-
age. By replacing the coverage probability by the survival prob-
abilities, we get that this model is equivalent to [18]. Again, the
presented model is a non-linear integer programming problem.
Knight et al. [20] extend the model to allow for different sur-
vival probabilities for different types of patients. Later, May-
orga et al. [21] used survival probabilities to develop dispatch
policies.

Our main contribution is that we present an integer linear pro-
gramming formulation for the version of MEXCLP with fractional
coverage. Compared to the non-linear formulation [18,19], this re-
duces the computation time and allows solving larger instances.

Erkut et al. [22] solve the non-linear model for 180 demand points
and 16 bases, but note that finding optimal solution for instances
with more bases would be problematic. To apply the model to de-
termine optimal base locations rather than an optimal distribution
of the ambulances given a fixed set of bases, we need to solve in-
stances with more base locations. We will show that our linear
model can be solved for larger instances. Note that the twomodels
are equivalent and thus provide the same solutions.

In Section 2, we will first show why a straightforward formula-
tion will result in a non-linear model. Second, we will show how
the problem can be reformulated as an integer linear programming
problem. Finally, we will prove the equivalence of the two mod-
els. Section 3 provides an empirical comparison of the computa-
tion times of the linear and non-linear formulation. In Section 4,
we apply the model to the region of Amsterdam to show the be-
havior of the model. Conclusions and possible extensions of this
research are discussed in Section 5. Note that in the description
of the model, we use the stochastic response times as our under-
lying application, but for the application to survival probabilities,
the model is equivalent.

2. Model description

Even though ambulance location models typically use all-or-
nothing coverage, multiple authors have noted that it might be
more realistic to use fractional coverage probabilities. In this sec-
tion, we present an adapted version of MEXCLP where a coverage
wij is obtained when an available ambulance at base i responds to
a call at demand point j. Different from the classical MEXCLP this
probability does not have to be 0–1 valued. This wij can, for exam-
ple, be interpreted as the probability of reaching demand point j
within the time threshold from base i, or as the probability that a
patient at location j survives when served by an ambulance from
base i.

As in MEXCLP, we assume that each ambulance is unavailable a
fraction q of the time. We call this the busy fraction. Furthermore,
we assume that the availability of an ambulance is independent
of the availability of the other ambulances. The probability that at
least one ambulance out of k is available is then Ek = 1 − qk. The
expected coverage of a demand point covered by k ambulances
is thus Ek. In our model, we will use this concept, introduced by
Daskin [6], to determine the expected coverage.

We now give two examples to show the effect of fractional cov-
erage probabilities on the expected coverage. In both examples, we
consider a region with one demand point and three base locations,
eachwith one ambulance located. Each base has a probabilitywij of
covering the demand point. In the first example, these are 0.9, 0.8
and 0.3, respectively. In the second example, we have 0.7, 0.4, and
0.3. In the deterministic case, the coverage is 1 if wij ≥ 0.5 and 0
otherwise. Fig. 1 depicts Example 1. Fig. 2 shows the expected cov-
erage for the deterministic and stochastic case for both examples,
varying the busy fraction. To show how the expected coverage is
computed, we show the computation for Example 1 with a busy
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(a) Example 1. (b) Example 2.

Fig. 2. Difference between deterministic and stochastic case for different parameters. In the first example, we have three bases with coverage probabilities 0.9, 0.8, and 0.3,
respectively. In the second example, we have three bases with coverage probabilities 0.7, 0.4, and 0.3. In the deterministic case, we have a coverage probability of 1 if the
stochastic coverage probability is at least 0.5, and 0 otherwise. The figures show the expected coverage for different busy fractions.

fraction of 0.4. In the deterministic case, we get

P(1st available) ∗ P(1st in time) + P(1st unavailable)
∗ P(2nd available) ∗ P(2nd in time)
+ P(1st and 2nd unavailable) ∗ P(3th available)
∗ P(3th in time)

= 0.6 ∗ 1 + 0.4 ∗ 0.6 ∗ 1 + 0.42
∗ 0.6 ∗ 0 = 0.84.

For the stochastic case we get

P(1st available) ∗ P(1st in time) + P(1st unavailable)
∗ P(2nd available) ∗ P(2nd in time)
+ P(1st and 2nd unavailable) ∗ P(3th available)
∗ P(3th in time)

= 0.6 ∗ 0.9 + 0.4 ∗ 0.6 ∗ 0.8 + 0.42
∗ 0.6 ∗ 0.3 ≈ 0.76.

Fig. 2 shows that using 0–1 coverage results in different estima-
tions of the expected coverage than using the fractional coverage.
Typically, the deterministic case overestimates the expected cov-
erage, even though Example 2 shows that for high busy fractions,
it can also be the other way around. These examples stress the im-
portance of including fractional coverage probabilities.

2.1. Model formulation

In our model, we are given a set of demand points N and a set
of possible base locations M . For each demand point j, we have a
given demand dj. This dj should be a measure for the number of
calls within demand point j. See, for example, Channouf et al. [23],
and Setzler et al. [24] for EMS call volume forecasting methods.
Each base location has a capacity bi, which is themaximumnumber
of ambulances that may be located at that station. In total we
are allowed to use at most β base locations. The total number of
available ambulances is b. The busy fraction of an ambulance is
denoted by q. For each combination of a demand point j and a base
location i, we have a probability wij that an ambulance departing
from base i will reach demand point j within the time threshold.
For fixed demand point j, givenwij, we can order the base locations
from the closest to the furthest for this demand point. Let aij denote
the index of the base location that is in position i in this ordering
for demand point j. Similarly, let ranking(i, j) be the ranking of
base i in the ordering of demand point j. So, by definition we have
ranking(aij, j) = i.

The most straightforward way of modeling our problem is
to introduce a decision variable xi denoting the number of
ambulances assigned to location i. The expected coverage of
demand point j in terms of xi is then

cj(x) =


i∈M

q


k<ranking(i,j)

xakj
(1 − qxaij )waijj. (1)

Clearly, this formulation is not linear in the decision variables.
When solving larger instances, this can result in longer compu-
tation times. To avoid this, we present a different formulation for
which the objective is linear in the decision variables.

In order to formulate a linearmodel, we introduce a new binary
decision variable zijk indicating whether the kth preferred, with
respect to wij, ambulance for demand point j is located at base
location i. If, for example, base location 1 is the closest one for
demand point 2 andwe have three ambulances located at that base
location, we get z121 = z122 = z123 = 1. Additionally, we introduce
a binary variable yi, which has value 1 if and only if at least one
ambulance is located at base location i. This variable is needed to
limit the number of base locations that is used.

Using these decision variables we are able to formulate our
model as follows:

max c(z) =


j∈N

djcj(z) (2)

with
b

k=1

zijk ≤ xi ∀i ∈ M, j ∈ N, (3)
i∈M

zijk = 1 ∀j ∈ N, k ≤ b, (4)
i∈M

yi ≤ β, (5)

xi ≤ biyi ∀i ∈ M, (6)
i∈M

xi = b, (7)

yi, zijk ∈ {0, 1} ∀i ∈ M, j ∈ N, k ≤ b, (8)

xi ∈ N ∀i ∈ M (9)
and

cj(z) =

b
k=1

(1 − q)qk−1

i∈M

zijkwij ∀j ∈ N.

The objective is to maximize the expected coverage over all
demand points. This is defined as the sum of the coverages that
can be provided to an individual node by the whole system, cj(z),
multiplied by the total demand generated at this node, dj. The value
cj(z) is calculated by conditioning on the number of unavailable
ambulances. The probability that the kth ambulance is the first
available one equals (1 − q)qk−1. If the kth preferred ambulance
is located at location i, we obtain an expected coverage of wij.
Constraints (3) state that no more than xi ambulances may be
assigned to base i. This makes sure that the zijk’s have the right
value. Constraints (4) ensure that the kth preferred ambulance
of demand point j is located at no more than one base location.
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In order to design a realistic system, we add a limitation on
the maximum number of base locations by constraint (5). This
constraint is not included in Ingolfsson et al. [18]. They assume that
the set of bases is fixed. Constraints (6) guarantee that the number
of vehicles located at each station does not exceed its capacity.
Finally, constraint (7) states that no more than b ambulances are
used.

In the Appendix the complete description of the non-linear ver-
sion is given. Now, we prove that the two formulations are equiv-
alent.

Theorem 1. CMINLP
= CMILP .

Proof. Given a solution (x′, y′) for MINLP, we construct the
following solution (x, y, z) for MILP. Let x := x′, y := y′, and

zijk :=


1 for k =

 
l<ranking(i,j)

xalj + 1, . . . ,


l≤ranking(i,j)

xalj


,

i ∈ M, and j ∈ N
0 otherwise.

We show that this solution is feasible and that it has the same
objective value as (x′, y′).

Since constraints (5)–(7) are equivalent to (A.10)–(A.12), the
constructed solution satisfies these constraints. In the construction
of z, we set exactly


l<ranking(i,j) xalj −


l≤ranking(i,j) xalj = xi

variables to 1, given i and j. Hence, constraint (3) is satisfied. Finally,
constraint (4) is satisfied because the order aij fully determines at
which base the kth ambulance for demand point j is located.
Now, we define
cij(x) := qδ(1 − qλ)waijj, where δ =


l<ranking(i,j) xalj and λ = xaij .

Then, we get

cij(x) = qδ(1 − qλ)waijj = qδ
λ

k=1

qk−1(1 − q)waijj

=

λ
k=1

qδ+k−1(1 − q)waijj =

λ+δ
k=δ+1

qk−1(1 − q)waijj

=

b
k=1

qk−1(1 − q)waijjzaijjk.

For the first equality, we use the geometric sequence. This gives
that 1 − qλ

=
λ

k=1 q
k−1(1 − q). The last equality is true by

construction of z. All terms that are added to the sum have zijk = 0.
By summing over all demand points j and base stations i, we get

j∈N

djcj(x) =


j∈N

dj

i∈M

cij(x)

=


j∈N

dj

i∈M

b
k=1

qk−1(1 − q)waijjzaijjk

=


j∈N

dj

i∈M

b
k=1

qk−1(1 − q)wijzijk

=


j∈N

djcj(z).

Since for every solution (x′, y′) for MINLPwe can find a solution
(x, y, z) for MILP with the same objective value, we have that
CMINLP

≤ CMILP .
To show that CMINLP

≥ CMILP , we prove that given an optimal
solution (x∗, y∗, z∗) for MILP, we have that (x∗, y∗) is a feasible
solution for MINLP with the same objective value. Clearly, (x∗, y∗)
is feasible. Without loss of generality, we can assume that the
optimal solution for MILP satisfies the relation between x and z

as before. It is optimal to respect the order aij in filling z, because
qk−1(1−q) is concave. As a result, by the same arguments as before,
we have that CMINLP

≥ CMILP .
Hence, CMINLP

= CMILP . �

3. Comparison of computation time

To analyze the difference in computation time between our
formulation (MILP) and the non-linear formulation (MINLP), used
for example by Ingolfsson et al. [18], we apply both models to a
set of 20 generated test instances. We implemented both models
in AIMMS 3.14 [25] and used the default solvers, which are CPLEX
12.6 [26] and BARON 12 [27], respectively.

We created two sets of ten instances differing in the number
of demand points and potential bases. We randomly generated
demand points and base locations in the unit square. The
average travel time between two points is the Euclidean distance
multiplied by 1500 s. We assume that both the pre-trip delay and
the travel times are stochastic. The travel times are assumed to be
normally distributed with a coefficient of variation of 0.25, which
corresponds to a standard deviation of 25% of the mean. The pre-
trip delays are incorporated in the sameway as in the case study, a
lognormal distribution with mean 5.2967 and standard deviation
0.4574. The time threshold is set to 900 s, or 15 min. For each
demand point, we generate a weight dj uniformly between 10 and
30. Hence, the maximum difference in importance between two
demand points is a factor of 3. We use a busy fraction of 42%,
which corresponds to the observed busy fraction in the region of
Amsterdam.

For the first set of instances, we take 180 demand points and
10 potential bases. We set β to 10, so that there is no limitation
on the number of opened bases. Basically, the model only decides
how to distribute the available ambulances over the given bases.
The dimensions of these instances correspond to the test cases in
Ingolfsson et al. [18].

The second set of instances is used to test how the formulations
perform when not all bases can be opened. To that end, we take
instances with 100 demand points and 100 base locations, while
allowing to open only 10 bases, i.e. β = 10. In both sets, we set
the number of ambulances to 18 and the maximum number of
ambulances per base to 5.

Note that the two formulations,MILP andMINLP, are equivalent
and thus have the same optimal objective value.

3.1. Results

As described above, we have a total of 20 test instances, which
can be divided in two groups. To all instances, we apply both
models with different time limits. For the easier set of instances,
10–180, we set the time limit to 5 min, 30 min, and 24 h. Since the
linear formulation already provided all optimal solutions within
5 min, we did not run it with longer time limits. For the second set
of instances, we used time limits of 30 min and 24 h. The results
for all instances are summarized in Table 1.

The table shows a significant difference in performance be-
tween the two formulations for both set of instances. For the first
set, MILP was able to solve all instances to optimality in less than
3 s, while for MINLP, optimality could not be guaranteed for any
of the instances within 30 min. However, in seven cases the best
solution found after 30 min was the optimal one. For one instance,
the solver did not provide a feasible solution within 5 min. Even
within a time limit of 24 h, optimality could not be guaranteed for
two of the instances, although the optimal solution was found.

For the second instance set, no optimal solutions were found
within 30min. For MILP, the average gap was only 0.10%, while for
MINLP this was 28.25%. Note that the gap is defined as the value
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Table 1
Results for comparison of computation time. The first three columns describe the instances. Column 4 shows the number of instances that are solved to optimality. In column
5, it is stated in how many of those cases the optimality could be verified by the solver. Column 6 shows the number of instances for which no solution is returned by the
solver after the time limit has exceeded. The final two columns show the average gap and the average computation time.

Size Formulation Time limit (s) # opt # verified # no sol. Aver. gap Aver. time (s)

10–180 MINLP 300 2 0 1 0.50% 300
10–180 MINLP 1800 7 0 0 0.02% 1800
10–180 MINLP 86400 10 8 0 0.00% 39303
10–180 MILP 300 10 10 0 0.00% 1.96
100–100 MINLP 1800 0 0 3 28.25% 1800
100–100 MINLP 86400 0 0 2 26.40% 86400
100–100 MILP 1800 0 0 0 0.06% 1800
100–100 MILP 86400 9 9 0 0.00% 31308

Fig. 3. Empirical distribution of pre-trip delay.

of the best found solution divided by the best found upper bound.
The upper bound found in the linear formulation is also used to
compute the gap for the non-linear case. When the time limit is
set to 24 h, MILP was able to solve nine instances to optimality.
For the remaining instance, the gapwas only 0.02%. The non-linear
model gave no optimal solutions and the average gap was 26.40%.
In two cases, no solution was returned by the solver.

4. Case study

In this section, we apply the presented model to the region
of Amsterdam, the Netherlands. We define the set N of demand
points as the set of all postal codes in this region. This gives us
a total of 161 points, which corresponds with an average size of
3.9 km2 per postal code zone. We assume that each demand point
is also available as a potential base location. Hence, the setM equals
the setN . However, in the solution, we are allowed to use atmost 9
of these bases, which corresponds to the number of bases currently
in use in this region. The number of available ambulances is set to
18.

4.1. Data analysis

In order to apply the model, we have to determine the busy
fraction q, the demand dj for each j ∈ N , and the coverage
probabilities wij. For the busy fraction, we take the average busy
fraction during the day over the last 4 years, which is equal to 0.42.
The expected demand for demand point j, dj, is estimated by the
average number of calls that have arisen from that demand point
over the years 2008–2012. This data is provided by the ambulance
provider in the region of Amsterdam. To compute wij, we have
to estimate the pre-trip delay distribution and the travel time
distribution. Below, we describe these estimations. Based on these
two distributions, we compute wij by taking the convolution of
the two distributions. Let Rij be a random variable representing

the response time for a call from demand point j served by base
i. Furthermore, let tij(x) be the travel time distribution for trips
between i and j. Finally, let h(x) be the distribution function of the
pre-trip delay. Note that the pre-trip delay is independent of i and
j. As in [18], we compute wij in the following way:

wij = P(Rij ≤ δ) =

 δ

0
h(x)tij(δ − x)dx. (10)

Here, δ is the response time target, which is 15 min in the
Netherlands.

4.1.1. Pre-trip delays
The pre-trip delay is the time spent before the ambulance leaves

the station. Based on 446,290 calls of high urgency, we find that
a lognormal distribution gives a reasonable fit. This is the same
result as obtained by Ingolfsson et al. [18]. For our data, the pre-
trip delay is best approximated by a lognormal distribution with
mean 5.2967 and standard deviation 0.4574. This corresponds to
an average pre-trip delay of 222 s and a standard deviation of 107 s.
The average is similar to the numbers reported in the annual EMS-
reports in the Netherlands [28]. Fig. 3 shows the empirical and
fitted distribution of the pre-trip delays.

4.1.2. Travel times
The calculation of the travel time distribution is more

complicated, since we have a different travel time for each pair
of base location and demand point. In order to estimate these
distributions, we analyzed 10 pairs withmore than 750 samples in
our database. Based on these, we conclude that the travel times are
well approximated with a normal distribution with a coefficient of
variation of 0.25. One problem with a normal distribution is that
it could generate negative values, which cannot occur in practice.
However, since the coefficient of variation of 0.25, this happens
only for values smaller than µ − 4σ , which happens in only 0.3%
of the cases. For the mean travel time between two points, we use
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Fig. 4. Empirical distribution of travel times for one particular pair of postal codes.

the travel time model introduced by Kommer and Zwakhals [29],
which is specifically developed for ambulances in the Netherlands.
This model estimates the driving speed on each road type and uses
that to compute the travel times. The estimated driving speeds that
we use are based on rush hours, workdays from06.30 till 09.30 and
from15.00 till 19.00. Fig. 4 shows for one pair of points that this can
give a reasonable fit, although we can also see that the fit is worse
than for the pre-trip delay. To account for the potential misfit, we
will evaluate the sensitivity of the model with respect to the travel
time distribution in Section 4.2.4.

4.2. Results

To evaluate the performance of themodel, we performmultiple
tests. First, we will compare the optimal solution according to
the model with the current set of base locations. This shows
us the potential performance increase. Second, we will compare
the solution with the cases where we do not take into account
randomness in either the pre-trip delay or the travel times. This
provides insight into the importance of modeling the uncertainty.
Furthermore, by plotting the selected bases, we get insight in
the structure of the provided solutions. Third, we investigate the
impact of the restriction on the number of bases. In our base case,
we limit the number of bases by the current number, which is
nine. These results may provide a trade-off between the number
of bases to open and the coverage that can be obtained. Finally, we
will evaluate the sensitivity to the chosen travel time distribution.
We show how the solutions change, when different coefficients of
variation are used. All computations were executed on a 2.9 GHz
Intel(R) Core(TM) i7-3520M laptop with 8 GB of RAM. We used
CPLEX 12.5 as our solver [26].

4.2.1. Current versus optimal
In the current situation, there are nine base locations in the

region of Amsterdam. To investigate whether these nine bases
are located in an optimal way, we compare the optimal solution
according to the model with the best solution given that the bases
are fixed. Note that the number of ambulances remains fixed at
18. In the optimal solution, we are only allowed to open the same
number of bases as in the current situation. We will refer to this
case as the base case. Comparing the results, we see that without
changing the base stations, we can obtain a coverage of 92.03%.
By changing the bases, however, we can obtain an increase of 2.92
percentage points, to 94.95%. This corresponds with reaching 37%
of the previously uncovered calls. Note that the actual coverage
in 2012 was 93.3% for this region [28]. This coverage is higher
than expected by the model, which can be explained by some of
the simplifying assumptions of the model. The model ignores that

Table 2
Importance of taking into account randomness in pre-trip delay and travel
times. Estimated coverage is the coverage with respect to the wij ’s used in the
optimization. Real coverage is the coverage with respect to wij where both pre-trip
delay and travel times are stochastic.

Pre-trip delay Travel times Estimated coverage Real coverage

Deterministic Deterministic 0.9852 0.9304
Deterministic Stochastic 0.9656 0.9487
Stochastic Deterministic 0.9623 0.9490
Stochastic Stochastic – 0.9495

dynamic ambulancemanagement is used to improve the real-time
performance. Additionally, in practice there is a link with non-
urgent patient transportations that are partly executed with the
same ambulances. We did not incorporate this link in the case
study.

4.2.2. Impact of randomness
To investigate the impact of the randomness in both the pre-trip

delay and the travel times, we create four test instances. The first
assumes stochastic pre-trip delays and travel times and is the same
as the base case defined earlier. Then, we define two instances in
which the randomness of one of the two response time compo-
nents is ignored. The last instance has both deterministic delays
and travel times and corresponds to the classical MEXCLP. In Ta-
ble 2, we show the coverage according to the wij’s used in the op-
timization and the coverage according to the wij’s in the base case.
Clearly, the coverage in the base case is the highest, since this gives
the optimal solution with respect to the wij’s in the base case.

We observe that in order to get the optimal solution, it is
important to take the randomness in both the components into
account. In particular, when both random components are ignored,
we obtain far from optimal solutions with respect to the input of
the stochastic case. Note that this case corresponds to the classical
MEXCLP. Furthermore, we see that the coverage is consistently
overestimated when the randomness is not incorporated. In
the fully deterministic case, this overestimation is almost 5.5
percentage point.

Since the non-linear formulation was not able to solve the
model for many potential bases, it is interesting to see the impact
of the fractional coverage probabilities on the selected set of bases.
Fig. 5 shows the selected bases for the fully deterministic case,
which corresponds to the classicalMEXCLP, and the fully stochastic
case.We see that in the stochastic case, bases are evenly spread out
over the city center, so as to provide good coverage to these regions
with high call volume. This is not necessary in MEXCLP, because
a coverage within 15 min suffices. In three cases, two bases are
located close to each other. This is necessary to avoid somedemand
points to be completely uncovered. This is a direct consequence of
the strict 0–1 coverage.



P.L. van den Berg et al. / Operations Research for Health Care ( ) – 7

(a) MEXCLP locations. (b) Optimal locations.

Fig. 5. Maps of base locations selected by deterministic MEXCLP 5(a) and stochastic MEXCLP 5(b).

Table 3
Coverage for different number of bases.

# bases Coverage # bases Coverage

1 0.6680 10 0.9508
6 0.9381 11 0.9517
7 0.9434 12 0.9524
8 0.9481 13 0.9533
9 0.9495 18 0.9553

4.2.3. Limited number of bases
In this part, we investigate the impact of the number of bases

on the expected coverage. We run the model for different values
of β and compare the coverage. Note that the total number of
ambulances is fixed.

Table 3 shows that reducing the number of bases from 9 to 7
does not have a huge impact on the expected coverage. Similarly,
adding one or two bases hardly increases the coverage. When
no limit is set on the number of bases, which corresponds to a
different base for each ambulance, the coverage increases by only
0.58 percentage point compared to the base case. For this coverage
to be reached, we need twice as many bases. Ambulance providers
should make the trade-off between the cost of an additional base
and the increase in coverage.

4.2.4. Sensitivity to travel time distribution
Since higher or lower variation in the travel times might influ-

ence the optimal ambulance locations, we compare the outcome
of the model for different levels of variation in the travel time dis-
tribution. In the base case, we used a coefficient of 0.25, corre-
sponding to a standard deviation of 0.25 times the mean. We vary
this value from 0, which corresponds to the case with determin-
istic travel times, to 0.5. The expected coverage and the number
of changes in the ambulance distribution are given in Table 4. The
third column gives the number of bases that are located differently,
while the fourth column lists the number of ambulances that are
assigned to a different base. Note that if a base is located differently,
the ambulances assigned to that base are counted as assigned to a
different base.

We see that the coverage decreases when the variability in
the travel times increases. Due to the relatively high coverage
percentage, the loss of coverage as a consequence of a more

negative worst-case is higher than the benefit from a better best-
case travel time realization. Furthermore, we can conclude that the
optimal location of the ambulances does not change significantly
for small changes in the variation of the travel times. Only in the
twoextreme cases,more than one ambulance is located differently.

4.2.5. Sensitivity to busy fraction
The model, as presented, takes the busy fraction of an

ambulance as an input. Typically, this busy fraction is hard to
estimate and might depend on the selected bases and ambulance
distribution. To overcome this, one could use an iterative method
where, based on the outcomes of the model, the busy fraction is
estimated. With the updated value, the model is solved until some
convergence criterion is met [18]. To gain insight in the sensitivity
of the model to the busy fraction, we run the model for different
values of q. Furthermore, the solution obtained with q = 0.42
is evaluated for different busy fractions. The results are shown in
Fig. 6. For values of q between 0.3 and 0.5 the solution does not
change. Only when very high or very low busy fractions are used
in the optimization, we obtain suboptimal solution with respect to
a busy fraction of 0.42. Similarly, if we use 0.42 in the optimization,
the obtained solution is also optimal for some cases with different
busy fractions. Even if the busy fraction is significantly different,
the coverage loss as a result of the incorrect estimation is limited.
This shows that the model is rather robust against busy fraction
estimation errors.

5. Conclusions and future work

In this paper, we presented an ambulance location model
based on the maximum expected coverage model, introduced by
Daskin [6]. In contrast to the classical MEXCLP, we allow the
coverage provided by base i to demand point j to be fractional. This
allows to include stochastic travel times and survival probabilities.
These applications were already studied by Ingolfsson et al. [18]
and Erkut et al. [19]. They used a non-linear formulation to
model fractional coverage probabilities. We presented a linear
formulation for this problem, which is proved to be equivalent
to their formulation. We compared the computation time of our
linear formulation with the non-linear formulation and observed
that significant improvement can be obtained. Instances of the
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Table 4
Solution for different coefficients of variation (Var). Column two gives the coverage of the optimal solutionwith respect to
a particular Var. Column three gives the coverage of the solution provided by the base case with Var of 0.25 with respect
to different coefficients of variation. Column four evaluates the different solutions with respect to the base case of 0.25.
Column five and six give the number of bases and ambulances that are located differently.

Var Coverage Coverage of solution for
Var = 0.25 with respect to
different values of Var

Coverage of different
solutions with respect to
Var = 0.25

Changed
bases

Changed
assignment

0 0.9623 0.9608 0.9490 2 3
0.1 0.9600 0.9590 0.9494 1 1
0.2 0.9539 0.9535 0.9494 1 1
0.25 0.9495 0.9495 0.9495 0 0
0.3 0.9448 0.9448 0.9495 0 0
0.4 0.9342 0.9342 0.9495 0 0
0.5 0.9231 0.9226 0.9462 1 3

Fig. 6. Impact of busy fraction on obtained solution. On the left, the coverage, with respect to busy fraction of 0.42, of solution obtained with different busy fractions is
given. On the right, the solution obtained with busy fraction of 0.42 is compared with optimum for different busy fractions.

non-linear model that take more than 30 min to solve can now
be solved within a few seconds. We further applied the model
to the region of Amsterdam and observed that higher coverage
can be obtained according to our model. Furthermore, we saw
that including the randomness in pre-trip delay and travel times
has an important impact on the obtained solution. Since travel
time distributions are hard to estimate, we evaluated the impact
of different levels of variation in the travel time distribution. The
results show that small changes in the standard deviation do not
have a high impact on the optimal solution. Nevertheless, it would
be useful for future research to investigate potential improvements
in the estimation of the travel time distributions.

An interesting extension of this research would be to incorpo-
rate busy fractions that depend on the base station. This would
allow to incorporate workload variations within a region. In the
current formulation, this would result in a non-linear model. The
results of Section 3 show that tractability benefits significantly
from a linear formulation. Hence, investigating potential linear for-
mulations might be worthwhile for future research.

Finally, we highlight that most proposed extensions of the
Maximum Expected Coverage Location Model can be included in
this model as well. For example, although the model is formulated
tomaximize the coverage given fixed resources, it can also be used
to determine the required number of ambulances to reach a fixed
coverage level. This can be done by applying the model iteratively
for different values of b.
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Appendix. Model formulation

In this Appendix, we state both the MILP and MINLP formula-
tion. Both models use the variables xi and yi. Here, xi is the num-
ber of ambulances located at base i and yi takes value 1 if base i
is opened and 0 otherwise. Additionally, MILP uses the variables
zijk indicating whether the kth preferred, with respect to wij, am-
bulances for demand point j is located at base location i. The two
formulations are then as follows.

MILP

CMILP
= max


j∈N

djcj(z) (A.1)

with
b

k=1

zijk ≤ xi ∀i ∈ M, j ∈ N, (A.2)
i∈M

zijk = 1 ∀j ∈ N, k ≤ b, (A.3)
i∈M

yi ≤ β, (A.4)

xi ≤ biyi ∀i ∈ M, (A.5)
i∈M

xi = b, (A.6)

yi, zijk ∈ {0, 1} ∀i ∈ M, j ∈ N, k ≤ b, (A.7)

xi ∈ N ∀i ∈ M (A.8)
and

cj(z) =

b
k=1

(1 − q)qk−1

i∈M

zijkwij ∀j ∈ N.
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MINLP

CMINLP
= max


j∈N

djcj(x) (A.9)

with
i∈M

yi ≤ β, (A.10)

xi ≤ biyi ∀i ∈ M, (A.11)
i∈M

xi = b, (A.12)

yi ∈ {0, 1} ∀i ∈ M, (A.13)
xi ∈ N ∀i ∈ M (A.14)
and

cj(x) =


i∈M

q


k<ranking(i,j)

xakj
(1 − qxaij )waijj ∀j ∈ N.
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