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RIGOROUSLY COMPUTING SYMMETRIC STATIONARY STATES
OF THE OHTA–KAWASAKI PROBLEM IN THREE DIMENSIONS∗

JAN BOUWE VAN DEN BERG† AND J. F. WILLIAMS‡

Abstract. In this paper we develop a symmetry preserving method for the rigorous computation
of stationary states of the Ohta–Kawasaki partial differential equation in three space dimensions. By
preserving the relevant symmetries we achieve an enormous reduction in computational cost. This
makes it feasible to construct computer-assisted proofs of complex three-dimensional structures. In
particular, we provide the first existence proofs for both the double gyroid and body centered cubic
packed sphere solutions to this problem.
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symmetry preservation, 3D periodic structures
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1. Introduction. It is very common for solutions to minimization problems
to exhibit (a lot of) symmetries. In this work we construct solutions to an energy
minimization problem arising in material science, which possess crystallographic sym-
metries. In particular, we use rigorously verified numerical methods to find periodic
solutions with additional imposed symmetries to the fourth order elliptic partial dif-
ferential equation (PDE)

−∆

(
1

γ2
∆u+ u− u3

)
− (u−m) = 0(1.1)

in three space dimensions. This PDE arises in the Ohta–Kawasaki model for diblock
copolymers. The significance of the parameter m ∈ [−1, 1] and γ > 0 will be discussed
below.

To study solutions of (1.1) which are invariant under a large symmetry group,
we develop a rigorous computational framework that incorporates symmetries. By
restricting to functions which are invariant under a group action (as well as being pe-
riodic) we prove, using computer-assisted analysis, the existence of the double gyroid
pattern depicted in Figure 1.1(a) and the body centered cubic (bcc) packed spheres
pattern in Figure 1.1(b). Although we focus here on solutions with specific sym-
metries to a specific PDE, the developed approach is more generally applicable to
symmetry-invariant periodic solutions of PDEs.

Before we delve into the mathematics, let us discuss the origin of the Ohta–
Kawasaki equation (1.1), sometimes called the diblock copolymer equation.

The physical problem. Diblock copolymers are linear chain molecules con-
sisting of two covalently bonded subchains, type A and type B. The subchains are
monomers which repulse each other causing the formation of type A-rich and type
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132 JAN BOUWE VAN DEN BERG AND J. F. WILLIAMS

Fig. 1.1. Solutions with m = 0.35 and γ = 5 plotted at u(x, y, z) = −m. These are both unit
cells. The volumes within these levels are type-A dominant. (a) Double gyroid profile. Note there
are two disjoint surfaces at the same level. (b) bcc-packed spheres.

B-rich domains. However, the chemical bonding of the subchains means that there
cannot be complete macrophase separation (as one finds in the Cahn–Hilliard prob-
lem). The combination of the chemical bonding of the chains and the immiscibility
of A and B leads to preferred energy configurations where the different types stay
“apart but never too far.”

Competition between short scale repulsion and long range attraction leads diblock
copolymer melts to self-assemble into a rich class of complex structures [2]. This
makes the materials exciting from both mathematical and practical points of view.
Experimentally, as the temperature and mass ratio are varied, many distinct phases
have been observed [16, 1]. We will work under imposed symmetries as all known
phases are periodic and exhibit additional crystallographic symmetries.

The most commonly seen phases are lamellae, triangularly packed cylinders, bcc
packed spheres, double gyroids, and close packed spheres. We constructed optimal
lamellae and triangularly packed cylinders in [27]; these can be interpreted as essen-
tially one-dimensional stripes and two-dimensional hexagonal spot patterns, respec-
tively. Here we focus on the double gyroid and bcc-packed spheres, since they are the
truly three-dimensional patterns most widely observed. Furthermore, to our knowl-
edge there is no prior rigorous proof of either phase existing as a solution to (1.1)
despite having been seen computationally [22, 8] and experimentally [16].

The mathematical problem. In [18] Ohta and Kawasaki present a free energy
functional modeling diblock copolymers, which can be rescaled as

E(u) =
1

|Ω|

∫
Ω

1

2γ2
|∇u|2 +

1

4
(1− u2)2 +

1

2
|∇v|2 dx.(1.2)

Since the symmetries of the double gyroid and bcc-packed spheres enforce a cubic
unit cell, we consider u to be a periodic function on a cubic domain Ω = [0, L]3. The
average m = 1

|Ω|
∫

Ω
u(x)dx determines the ratio between the types A and B subchains.

The parameter γ measures the strength of the long range attraction relative to the
short range repulsion. The function v is the unique solution of the linear elliptic
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STATIONARY STATES OF THE OHTA–KAWASAKI PROBLEM 133

problem −∆v = u−m with periodic boundary conditions and satisfying
∫
v = 0. In

the energy (1.2) the first term penalizes jumps in the solution, the second favors u =
±1, and the last penalizes variation from the mean. Without the final term we have
the classical Cahn–Hilliard energy functional which is minimized by configurations
which entirely separate into one region where u = −1 (“type A”) and another where
u = +1 (“type B”). Critical points of the energy (1.2) are found by taking the gradient
in H−1 [7], leading to (1.1).

Crystallographic, or space group, symmetries combine the translational symme-
tries of a lattice together with other elements such as directional flips, rotation, and
screw axes. Physically, determining the space group a given material belongs to is
an essential step in structure analysis as it minimizes the information required for a
complete description. We use this reduction to construct efficient numerical methods
which guarantee our solutions have the desired symmetry. A complete mathematical
discussion of all 230 space groups and their properties is presented in [3]. The review
article [15] contains examples of diblock copolymers in various space groups. The
double gyroid and bcc-packed spheres belong to space groups 230 and 229, respec-
tively.

We first describe the details of our method for space group 230 and postpone
a summary of space group 229 (which is simpler) to subsection 3.7. We look for
L-periodic solutions

u(x1, x2, x3) = u(x1 + L, x2, x3) = u(x1, x2 + L, x3) = u(x1, x2, x3 + L),

which are invariant under the actions of space group 230. This group is generated by
the transformations

Sσx
def
= (x2, x3, x1),(1.3a)

Sτx
def
=
(
x2 + L

4 , x1 + L
4 , x3 + L

4

)
,(1.3b)

Sρx
def
=
(
−x1, x2, x3 + L

2

)
.(1.3c)

We denote the 96 element (symmetry) group generated by {Sσ, Sτ , Sρ} by G. The
group includes some elements which are relatively easy to distinguish visibly, such as
the half shift along the main diagonal

S2
τx =

(
x1 + L

2 , x2 + L
2 , x3 + L

2

)
,

as well as the point symmetry

Sπx
def
= (L− x1, L− x2, L− x3) .(1.4)

Definition 1.1. An L-periodic function u is said to be G-symmetric if u(Sx) =
u(x) for all S ∈ G.

To prove the existence of a G-symmetric solution representing a double gyroid
pattern, as depicted in Figure 1.1(a), we build on previously developed rigorous com-
putational methods; see [23, 26] and the references therein. This technique is based
on the Banach fixed point theorem, where the conditions for proving a contraction
are reduced to checking a single, explicit but complicated, inequality, which can be
accomplished with the assistance of a computer. The main contribution of this paper
is the development of a flexible symmetry framework in such a rigorous numerics
setting. Preserving all symmetries is not only imperative for the physical problem,
but also makes our method very efficient computationally as we reduce the num-
ber of coefficients we need to store and compute on by a factor of approximately 100.
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134 JAN BOUWE VAN DEN BERG AND J. F. WILLIAMS

This makes it feasible to prove the existence of complicated (but symmetric) solutions
of the PDE (1.1) in three space dimensions; see section 4 for specific results.

Previous results. Most relevant to the current work are results discussing the
structure of solutions near the point m = 0, γ = 2 such as [7, 5, 27]. Various solutions
have been investigated, with periodic minimizers found as γ →∞ [6, 13]. There have
also been considerable numerical investigations of this problem by integrating the
PDE in time [7, 22] or directly solving the stationary problem [21] amongst others.

This paper is, in some ways, an extension of the ideas of [27] to three dimensions.
That is, we use a similar problem formulation and similar tools from rigorous numerics
to ensure that our computed “numerical solutions” (finite approximations) are close
to solutions to the full infinite dimensional problem in a precise and rigorously verified
manner. Wanner and colleagues have used rigorous numerics on this problem in one
space dimension both to construct solutions [30] and to find and continue bifurcation
points [17].

Outline of paper. In this paper we prove existence of solutions to (1.1) whilst
imposing symmetries observed in experimentally discovered profiles. Our method of
proof requires the construction of abstract functional analytic bounds which are then
implemented practically and verified numerically about given approximate solutions.
The details of the approach we use for rigorous numerics and the various required
general estimates are laid out in section 2. In section 3 we explain the symmetry
group, how to encode it into our estimates, and how to preserve it computationally.
Section 4 contains rigorously verified solutions to (1.1) from space groups 229 and
230, discusses some of the numerical and algorithmic issues, and also presents some
rather unusual profiles. Finally, in section 5, we discuss possible further extensions of
this approach.

Code to generate the figures in this paper and run the proofs is available at [29].

2. Rigorous computational setup. We use a functional analytic approach to
rigorous numerics. The crux of this methodology is to perform validated computations
to verify that an appropriate fixed point operator is contracting in a neighborhood
of our finite dimensional approximation. Before constructing the fixed point theorem
we need to formulate our problem and detail the necessary norms and spaces. This
builds on earlier work in two [12, 10, 27, 4] and higher [11] dimensional problems.
For clarity of exposition, we start with the setup and estimates without assuming a
symmetric setting. The modifications needed to incorporate the symmetries will be
discussed in subsections 3.3 to 3.6.

2.1. Problem formulation. We set `
def
= L

2π . Looking for a periodic solution,
we write

u(x) =
∑
k∈Z3

cke
ik·x/`,

with c0 = m. This transforms the differential equation (1.1) into a Fourier space:

hk(c)
def
= (γ−2`−4k4 − `−2k2 +m)ck + `−2k2〈c3〉k = 0,(2.1)

for k ∈ Z3
0

def
= Z3 \ {0}, where

k
def
=
(
|k1|2 + |k2|2 + |k3|2

)1/2
.
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STATIONARY STATES OF THE OHTA–KAWASAKI PROBLEM 135

We note that

h0
def
= c0 −m(2.2)

vanishes, since we impose c0 = m. Finally, 〈··〉 denotes the discrete convolution
product in three dimensions:

〈ab〉k
def
=
∑
k′∈Z3

ak′bk−k′ ,(2.3)

which generalizes to 〈c3〉 = 〈〈cc〉c〉.

2.2. Functional analytic setup. We will use the 1-norm in Fourier space:

‖c‖ def
=
∑
k∈Z3

|ck|.(2.4)

The corresponding Banach space is

X
def
= {(ck)k∈Z3 : ck ∈ C , ‖c‖ <∞}.(2.5)

We are interested in real-valued u only, and one may be tempted to require c−k = c∗k
in the definition of X. However, this is just one of the symmetries that the solutions
considered in this paper will have, and we will deal with all these symmetries in section
3 in an integrated fashion.

It is convenient to introduce the basis vectors ek:

(ek)k′ =

{
1 for k = k′,

0 for k 6= k′.

The solution average, c0 = m, is fixed, hence we look for zeros of (hk)k∈Z3
0

as defined
in (2.1) in the affine space

Xm
def
= {c ∈ X : c0 = m}.(2.6)

Since Xm is an affine linear space, it is more convenient to shift the problem to the
linear space

X0
def
= {c ∈ X : c0 = 0}

as follows. Any element c̃ ∈ Xm can be written as c̃ = me0 + c, with c ∈ X0. Instead
of h with domain Xm we now consider f with domain X0 defined by

fk(c)
def
= hk(me0 + c).(2.7)

Without loss of generality, elements in X0 may be indexed by k ∈ Z3
0 rather than

k ∈ Z3, and the norm on X0 is given by

‖c‖ =
∑
k∈Z3

0

|ck|.

The norm (2.4) on X has the Banach algebra property

‖〈ab〉‖ ≤ ‖a‖‖b‖ for all a, b ∈ X.
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136 JAN BOUWE VAN DEN BERG AND J. F. WILLIAMS

We note that the convolution of two elements of X0 lies in X but not necessarily in
X0. The second convenient property of the 1-norm (2.4) is that the dual of X0 is the
corresponding l∞ space:

X∗0 =
{

(dk)k∈Z3
0

: sup
k∈Z3

0

|dk| <∞
}
.

Any bounded linear operator Γ on X0 can be characterized by Γkk′ = (Γek′)k with
k, k′ ∈ Z3

0. It readily follows that the operator norm of Γ is given by

‖Γ‖B(X0) = sup
k′∈Z3

0

‖Γek′‖(2.8)

= sup
k′∈Z3

0

∑
k∈Z3

0

|Γkk′ |.(2.9)

We will compute in a finite dimensional subspace. Let K ∈ N, and let

N = N(K)
def
=
∣∣{k ∈ Z3 : 0 < k ≤ K}

∣∣,(2.10)

where |.| denotes the number of elements in the set. We define

XN
def
= {c ∈ X0 : ck = 0 for all k > K}.(2.11)

Clearly, XN can be identified with a finite dimensional space CN , and we will implicitly
use this identification whenever convenient. Elements of XN

∼= CN are sometimes
denoted by cN . The natural complement of XN is

X∞
def
= {c ∈ X : ck = 0 for all k ≤ K}.

The projections onto XN and X∞ will be denoted by πN and π∞, respectively.
In preparation for a computer-assisted proof, we first find numerically an approx-

imate zero c in XN of the Galerkin projection πNf , i.e.,

c ∈ XN
∼= CN such that πNf(c) ≈ 0.

We also compute an N×N matrix AN , namely a numerical (i.e., not exact) inverse of
the Jacobian JN of the finite dimensional map cN → πNf(cN ) evaluated at cN = c.

With f defined in (2.7) we now introduce the fixed point operator on X0 as

T (c)
def
= c−Af(c).

Here A is a linear block-diagonal operator of the form

πNAc = ANπNc ,(2.12a)

π∞Ac = Λ−1π∞c,(2.12b)

and Λ is the diagonal operator given by

(Λc)k
def
= λkck,

where
λk

def
= γ−2`−4k4 − `−2k2 +m.

We assume that K ∈ N is sufficiently large, say K ≥ γ`, so that λk 6= 0 for all k > K.

D
ow

nl
oa

de
d 

01
/0

4/
21

 to
 1

45
.1

08
.2

54
.2

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

STATIONARY STATES OF THE OHTA–KAWASAKI PROBLEM 137

Provided A is injective (this will follow from the assumptions in Theorem 2.1;
see its proof), the zero finding problem f(c) = 0 is now equivalent to the fixed point
problem T (c) = c. Since A is an approximation of the inverse of the Jacobian of f at
c, one may expect T to be a contraction mapping on small balls around c. We denote
by B the unit ball in X0:

B = {(vk)k∈Z3
0

: ‖v‖ ≤ 1}.

In subsections 2.3 and 2.4 we will derive explicit expressions for Y > 0 and
Z : R+ → R+, which provide bounds on the residue and the derivative, respectively:

‖T (c)− c‖ ≤ Y,(2.13)

sup
w,v∈B

‖DT (c+ rw)v‖ ≤ Z(r).(2.14)

The key mathematical step is the next lemma which shows that it suffices to check
that

Y + r̃Z(r̃)− r̃ < 0,(2.15)

for some r̃ > 0, to conclude that there is a unique solution of f(c) = 0 in the ball
of radius r̃ around the numerical guess c. Since Z(r), as obtained in subsection 2.4,
is a second order polynomial, the left-hand side of (2.15) is often called the radii
polynomial (a cubic one in this case) in the literature; see, e.g., [9, 25].

Theorem 2.1. Let K ≥ γ`. Assume that Y and Z(r) satisfy the bounds (2.13)
and (2.14). Let r̃ > 0 be such that the inequality (2.15) is satisfied. Then f has a
unique zero ĉ in

Br̃(c)
def
= {c ∈ X0 : ‖c− c‖ ≤ r̃}.(2.16)

Proof. It is straightforward to check that the bounds (2.13) and (2.14) together
with (2.15) imply that T is a contraction mapping on Br̃(c); see, e.g., [9] for more
details. By the Banach contraction theorem, this implies that T has a unique fixed
point ĉ in Br̃(c). To conclude that f(ĉ) = 0 we need to establish that A is injective.
First, π∞A is injective on X∞ since λ−1

k > 0 for k > K ≥ γ`; hence it suffices to
prove that the matrix AN is injective (or equivalently, invertible). We observe that
Z(r̃) < 1 by (2.15). Let 0 6= vN ∈ XN be arbitrary. On the one hand the bound (2.14)
implies that

‖πNDT (c)vN‖ ≤ Z(r̃)‖vN‖ < ‖vN‖,(2.17)

while on the other hand

πNDT (c)vN = (IN −ANJN )vN ,(2.18)

where JN is the Jacobian of the finite dimensional map cN → πNf(cN ) at cN = c,
and IN denotes the identity matrix acting on XN . By combining (2.17) and (2.18) it
follows that AN is invertible, hence injective.

Remark 2.2 (error estimate). Our approach gives a precise and computable error
bound. Let

u(x)
def
= m+

∑
0<k≤K

cke
ik·x/`,

û(x)
def
= m+

∑
k∈Z3

0

ĉke
ik·x/`.(2.19)
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It follows from the definition of the 1-norm on X and the observation that ĉ lies in
Br̃(c) as defined in (2.16) that the C0 error between the numerical approximation u
and the (true) solution û of (1.1) is bounded by r̃:

‖û− u‖∞ ≤ ‖ĉ− c‖ ≤ r̃.

Remark 2.3 (real-valuedness). It is not a priori clear that the solution û(x)
defined in (2.19) is real-valued. One way to obtain a real-valued solution is by using
the equivariance of f with respect to the operator γ0 : X0 → X0 given by (γ0c)k = c∗−k.
Indeed, it is not difficult to check that

f(γ0c) = γ0f(c).

If we choose a symmetric numerical approximation c, i.e., γ0c = c (hence u(x) is
real-valued), then the ball Br̃(c) is invariant under γ0, and it readily follows from
the uniqueness of the zero of f in Br̃(c) that γ0ĉ = ĉ; hence û(x) is real-valued. In
the current paper we will not use this argument. Instead, all symmetries (among
which u(x) = u(x)∗) will be dealt with in a unified manner in section 3 by reducing
the number of variables. We note that this equivariance argument is not specific to
complex conjugation and can be used for other symmetries as well.

Remark 2.4 (smoothness). Since the Fourier coefficients ĉ ∈ X0 are summable,
the solution û(x) is continuous. Moreover, it follows from (2.1) and (2.7) and the Ba-
nach algebra property that any zero ĉ of f satisfies (k2ĉk) ∈ X0, and by bootstrapping
(knĉk) ∈ X0 for any n ∈ N. Hence we obtain that û(x) ∈ C∞. Alternatively, we could
have set up the problem with an exponentially weighted norm ‖c‖ξ =

∑
k∈Z3 |ck|ξk,

with ξ > 1, as to recover analyticity of the solution; see, e.g., [14, 27]. This presents
no technical obstacle, but in the current paper we avoid this slight notational burden
for simplicity of presentation.

2.3. The bound Y . We derive a bound satisfying (2.13). We recall that ck = 0
for k > K and note that

[T (c)− c]k = [−Af(c)]k =


[ANπNf(c)]k for 0 < k ≤ K,
1
λk
f(c)k for K < k ≤ 3K,

0 for k > 3K,

since for k > K we have

f(c)k = `−2k2〈(me0 + c)3〉k,

which vanishes for k > 3K. Hence, there are only finitely many nonzero terms in
Af(c), which can all be computed with interval arithmetic. We thus obtain a bound
of the type (2.13) by setting

Y = ↑
∑

0<k≤3K

∣∣[Af(c)]k
∣∣,

where by ↑ I we indicate the maximum of the interval I obtained from an interval
arithmetic computation.

2.4. The bound Z. To derive a bound satisfying (2.14), we start by calculating
the derivative

Dfk(c)v = λkvk + 3`−2k2〈(me0 + c)2v〉k.
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Hence, using the shift property of the convolution

〈cek′〉k = ck−k′ ,(2.20)

we can express the components of the Jacobian as

Dfk(c)ek′ = δkk′λk + 3`−2k2〈(me0 + c)2〉k−k′ ,(2.21)

where δ denotes the Kronecker delta. Next we decompose

Df(c+ rw) = J + [Df(c)− J ] + [Df(c+ rw)−Df(c)] ,

where J is an approximate Jacobian defined by

πNJc = JNπNc,(2.22a)

π∞Jc = Λπ∞c.(2.22b)

We recall that JN is the exact Jacobian of the finite dimensional map cN → πNfN (cN )
evaluated at cN = c, i.e., JNπNv = πNDf(c)πNv, or equivalently

(Jek′)k = (DF (c)ek′)k for k,k′ ≤ K.(2.23)

In this notation we may split DT (c+ rw)v as follows:

DT (c+ rw)v = [I −ADf(c+ rw)]v

=
[
I −AJ

]
v −A

[
Df(c)− J

]
v −A

[
Df(c+ rw)−Df(c)

]
v.

We aim to obtain bounds on the three terms,

Q1 ≥ sup
v∈B
‖[I −AJ ]v‖,

Q2 ≥ sup
v∈B
‖A[Df(c)− J ]v‖,

Q3 ≥ sup
v,w∈B

‖A[Df(c+ rw)−Df(c)]v‖,

separately. Here Q3 will depend (quadratically) on r.
The bound Q1 is a bound on the operator norm (given by (2.9)) of I − AJ . We

note that, by (2.12) and (2.22),

πN [I −AJ ]v = [IN −ANJN ]πNv,

π∞[I −AJ ]v = 0 .

Evaluating ‖I − AJ‖B(X0) is thus a finite computation, since the only nonvanishing
elements ([I −AJ ]ek′)k are those with 0 < k,k′ ≤ K. In other words, the bound Q1

is the operator 1-norm of the matrix IN − ANJN (i.e., (2.9) restricted to a finite set
of indices), computed using interval arithmetic:

Q1 = ↑‖IN −ANJN‖1.

The bound Q2 is a bound on the operator norm of A[Df(c)− J ]. We start with

([Df(c)− J ]v)k =

{
3`−2k2〈(me0 + c)2π∞v〉k for 0 < k ≤ K,
3`−2k2〈(me0 + c)2v〉k for k > K.

(2.24)
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140 JAN BOUWE VAN DEN BERG AND J. F. WILLIAMS

Only the convolution term appears, since the linear term cancels, and it follows
from (2.23) that for k ≤ K the terms that depend on πNv vanish. We use the ex-
pression (2.8) for the operator norm and split the estimate in k′ ≤ 3K and k′ > 3K.
Starting with the tail terms, we infer from (2.24) and (2.20) that

([Df(c)− J ]ek′)k = 0 for k′ > 3K and k ≤ K.(2.25)

Furthermore, for k′ > 3K and k > K we have

(A[Df(c)− J ]ek′)k = (Λ−1π∞[Df(c)− J ]ek′)k =
3`−2k2

λk
〈(me0 + c)2〉k−k′ .

We estimate

`−2k2

γ−2`−4k4 − `−2k2 + 1
≤ CK

def
=

`−2K2

γ−2`−4K4 − `−2K2 + 1
(2.26)

for all k > K, where we have assumed that K ≥ `max{γ, γ1/2} (in practice this is a
very mild restriction).

We now obtain the tail estimate

‖A[Df(c)− J ]ek′‖ ≤ 3CK‖〈(me0 + c)2〉‖ for all k′ > 3K.

For k′ ≤ 3K we infer from (2.24) and (2.20) that (A[Df(c) − J ]ek′)k vanishes for
k > 5K. Hence it takes a finite computation using interval arithmetic to evaluate

Q̃2 = ↑ max
0<k′≤3K

‖A[Df(c)− J ]ek′‖,

exploiting (2.20), (2.23), and (2.25) for efficiency in practice. We thus obtain the
bound

Q2 = max
{
Q̃2, ↑3CK‖〈(me0 + c)2〉‖

}
.

We evaluate the third term by expanding

([Df(c+ rw)−Df(c)]v)k = 6`−2k2〈(me0 + c)wv〉kr + 3`−2k2〈w2v〉kr2,(2.27)

and we estimate the linear and quadratic terms in r separately. Hence we define, for
k ∈ Z3

0,

P (v, w)k
def
= 6`−2k2〈(me0 + c)wv〉k,

R(v, w)k
def
= 3`−2k2〈w2v〉k,

and we aim to obtain bounds

Q3,1 ≥ sup
v,w∈B

‖AP (v, w)‖,

Q3,2 ≥ sup
v,w∈B

‖AR(v, w)‖.

We must be careful with the linear term, as while 〈wv〉 lies in X and ‖〈wv〉‖ ≤
‖w‖‖v‖ ≤ 1 for v, w ∈ B, the convolution product 〈wv〉 does not necessarily lie in
X0. We interpret 〈(me0 + c)wv〉 = 〈(me0 + c)〈wv〉〉, and we want to “replace” the
two arbitrary elements v, w ∈ X0 with ‖v‖, ‖w‖ ≤ 1 by an arbitrary element q ∈ X
with ‖q‖ ≤ 1. To this end we introduce, for k ∈ Z3

0,
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(P̃ q)k
def
= 6`−2k2〈(me0 + c)q〉k,

which may be viewed as a linear operator from X to X0. As explained above, we then
have the estimate

sup
v,w∈B

‖AP (v, w)‖ ≤ sup
q∈X,‖q‖≤1

‖AP̃q‖.(2.28)

We interpret AP̃ in the right-hand side of (2.28) as a linear operator which maps X
to X0, and we estimate its norm analogously to the estimate above for A[Df(c)− J ].
It takes a finite computation using interval arithmetic to evaluate

Q̃3,1 = ↑ max
0≤k′≤2K

‖AP̃ ek′‖,

where k′ = 0 is included in the maximum. In particular, for all k′ ≤ 2K we have
that (AP̃ ek′)k vanishes for k > 3K. Estimating the tail term as before, we obtain the
bound

Q3,1 = max
{
Q̃3,1, ↑6CK‖me0 + c‖

}
on the operator norm of AP̃ and thus, via (2.28), on ‖AP (v, w)‖, as desired.

Finally, we deal with the quadratic term in (2.27). Analogous to the arguments
above leading to the bound Q3,1, we introduce, for k ∈ Z3

0,

(R̃q)k
def
= 3`−2k2qk,

which we view as a diagonal linear operator from X to X0 (or from X0 to X0, as

R̃e0 = 0). It takes a finite computation using interval arithmetic to evaluate

Q̃3,2 = ↑ max
0<k′≤K

‖AR̃ek′‖,

which is in fact just the 1-norm of the matrix ANπN R̃πN . Estimating the tail term
as before, we obtain the bound

Q3,2 = max
{
Q̃3,2, ↑3CK

}
on the operator norm of AR̃ and thus on ‖AR(v, w)‖, as desired.

By collecting terms we find that

Z(r) = Q1 +Q2 + rQ3,1 + r2Q3,2

gives a bound satisfying (2.14).

3. Symmetry preserving formulation.

3.1. Representation of the symmetry group in Fourier space. We re-
call from subsection 2.1 that we set `

def
= L

2π and write the Fourier transform of an
L-periodic function as

u(x) =
∑
k∈Z3

cke
ik·x/`.

In this section we consider the symmetry group Ĝ generated by transforming the
spatial symmetries G to Fourier space and complex conjugation of the u variable
(thus incorporating that we are only interested in real-valued u). For any S ∈ G we
obtain a corresponding right group action γS satisfying
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142 JAN BOUWE VAN DEN BERG AND J. F. WILLIAMS

u(Sx) =
∑
k∈Z3

[γSc]ke
ik·x/` for S ∈ G.(3.1)

In particular, for the generators {Sσ, Sτ , Sρ} of G the corresponding group actions γ
on Fourier space are given by

[γSσc]k1,k2,k3 = ck2,k3,k1 ,(3.2a)

[γSτ c]k1,k2,k3 = eiπ(k1+k2+k3)/2ck2,k1,k3 ,(3.2b)

[γSρc]k1,k2,k3 = eiπk3c−k1,k2,k3 .(3.2c)

For the other elements S ∈ G the corresponding group action γS acting on c is obtained
by transitivity; see Remark 3.1. For example, for the point symmetry Sπ in (1.4) we
obtain

[γSπc]k1,k2,k3 = eiπ(k1+k2+k3)ck1,k2,k3 .

Remark 3.1. To be explicit, if S ∈ G is represented by Sx = Ax + bL, with A
a unitary matrix and b a vector with values in [0, 1], then [γSc]k = e2πik·A−1bcAk.
Furthermore, for S1, S2 ∈ G, let us denote u1(x) = u(S1x) and u12 = u(S1S2x) =
u1(S2x). When u has Fourier coefficients c, then u1 has Fourier coefficients γS1c
by (3.1), and u12 has Fourier coefficients γS2

γS1
c again by (3.1). Hence γS is a right

group action:
γS1S2

c = γS2
γS1

c.

In addition to the group (action of) G, we take into account the symmetry coming
from complex conjugation of u, which is represented in Fourier space by the transfor-
mation

[γ0c]k1,k2,k3
def
= c∗−k1,−k2,−k3 .(3.3)

Rather than working with γ0 directly, it is more convenient to consider the composition
of γ0 and γSπ , which we denote by γ∗:

[γ∗c]k
def
= c∗k .

The full symmetry group Ĝ under consideration is generated by {γSσ , γSτ , γSρ , γ∗}.
Here we have slightly abused notation by identifying the action γ with the group itself
(since γ is a faithful action/representation of G). The group Ĝ has 192 elements. It

splits into two normal subgroups: Ĝ = G × H. Here H
def
= {e, γ∗}, where e denotes

the identity, and G is the subgroup generated by {γSσ , γSτ , γSρ}. Obviously G ∼= G.

3.2. Reduction to symmetry variables. From now on we will denote ele-
ments of G by g, and the action of G on c by γgc. The set of Fourier coefficients that
are symmetry invariant under G is given by

Xsym def
= {c ∈ X : γgc = c for all g ∈ G}.

Lemma 3.2. Let c ∈ Xsym with ck ∈ R for all k ∈ Z3. Then

u(x) =
∑
k∈Z3

cke
ik·x/`

is real-valued and G-symmetric in the sense of Definition 1.1.
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Proof. Since c is invariant under the action of G it follows from (3.1) that u is
invariant under the symmetries generated by (1.3) (in the sense of Definition 1.1).
The assumption that c is real-valued implies that c is also invariant under H, hence
under the full symmetry group Ĝ. It follows from (3.3) that u(x) is real-valued (since

γ0 ∈ Ĝ).

Remark 3.3. The subgroup H is somewhat particular to the symmetries defining
the space groups 229 and 230, which we consider in this paper. It implies that we may
restrict attention to real-valued Fourier coefficients. Although this is convenient from
a computational point of view, it is not essential. In Remark 2.3 we explained how to
recover real-valuedness of u(x) by using equivariance of f under complex conjugation
(rather than invariance of c under H). The remainder of the analysis deals with G
only, and we consider the general case of complex-valued Fourier coefficients.

We now study the group action of G in more detail. We write the right action γg
of g ∈ G on c ∈ X as

(γgc)k = αg(k) cβg(k).

Here βg is itself a left group action on Z3, i.e.,

βg1g2(k) = βg1(βg2(k)),(3.4)

whereas αg(k) ∈ {z ∈ C : |z| = 1} for all k ∈ Z3. The formulas for αg and βg for the
generators can be read off from (3.2). The product structure on α is given by

αg1g2(k) = αg1(βg2k)αg2(k),(3.5)

which follows directly from γg1g2 = γg2γg1 .

Lemma 3.4. The space Xsym is closed under the convolution product (2.3).

Proof. We first note that αg(k + k′) = αg(k)αg(k
′) and αg(0) = 1 for all g ∈ G.

Furthermore, βg(k + k′) = βg(k) + βg(k
′) . By using that βg permutes Z3 we obtain

〈γgaγgb〉k =
∑
k′∈Z3

αg(k
′)aβg(k′) αg(k − k′)bβg(k−k′)

=
∑
k′∈Z3

αg(k
′)αg(k)αg(−k′) aβg(k′)bβg(k)−βg(k′)

= αg(k)
∑
k′′∈Z3

ak′′bβg(k)−k′′

= (γg〈ab〉)k .

This concludes the proof.

We now list some properties of α that will be useful in what follows.

Lemma 3.5. Let k ∈ Z3 and g, h ∈ G.
(a) αg(k)αg−1(βg(k)) = 1.
(b) If βg(k) = βh(k) and αh−1g(k) = 1, then αg(k) = αh(k).
(c) If βg(k) = k, then αhgh−1(βh(k)) = αg(k).

Proof. For part (a) we use (3.5) to infer that

1 = αe(k) = αg−1g(k) = αg−1(βg(k))αg(k).
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For part (b) we write g = hh−1g. From the first assumption and (3.4) it follows that
βh−1g(k) = k. By applying (3.5) to g1 = h and g2 = h−1g, we see that the second
assumption implies

αg(k) = αhh−1g(k) = αh(βh−1g(k))αh−1g(k) = αh(k).

For part (c) we write k′ = βh(k) and apply (3.5) twice to obtain

αhgh−1(k′) = αh(βg(βh−1(k′)))αg(βh−1(k′))αh−1(k′)

= αh(k)αg(k)αh−1(k′) = αg(k),

where the final equality follows from part (a).

Our goal is to exploit the symmetry group G to reduce the number of independent
variables of elements in Xsym. Before we move on to the general argument, we make
some initial observations. Ultimately we shall restrict to those c ∈ Xsym which are
also invariant under H, hence real-valued. It follows from γSτ c = c that ck = 0
whenever k1 + k2 + k3 is odd. The following remark shows that this conclusion can
also be reached using invariance under the group G only (i.e., without resorting to H).

Remark 3.6. As warm-up for what is to follow, we first consider

G′
def
= {g ∈ G : βg = e}.(3.6)

The elements of G′ act, by definition, trivially on the Fourier indices, and they thus
form a subgroup of G. In our case G′ = {e, γSπ}, which is generated by the shift Sπ
in space. We note that G′ is a normal subgroup of G, since the group homomorphism
φ : g → βg has G′ as its kernel. The quotient group G/G′ is (isomorphic to) the point
group Oh, the symmetry group of the cube.

It follows from (3.5) that αg(k) is a group action of G′ for each k ∈ Z3, since
G′ fixes k by definition (3.6). For c ∈ X to be invariant under the subgroup G′, we
must have that αg(k)ck = ck for all g ∈ G′ and all k ∈ Z3; hence for each k ∈ Z3 we
must have either ck = 0 or αg(k) = 1 for all g ∈ G′. Since αγSπ (k) = (−1)k1+k2+k3 it
follows that for any c ∈ Xsym it holds that ck = 0 for k ∈ Zodd, where

Zodd
def
= {k ∈ Z3 : k1 + k2 + k3 is odd}.

This illustrates how we can take advantages of the subgroup G′, which acts trivially
on all Fourier indices k, to reduce the number of variables by a factor 2 a priori. To
obtain further reductions of the number of independent variables using the full group
G, we generalize these arguments below by considering each k ∈ Z3 separately.

To simplify the presentation in what follows we use the notation

g.k
def
= βg(k) for g ∈ G.

For any k ∈ Z3 we define the stabilizer

Gk
def
= {g ∈ G : g.k = k}.

and the orbit

G.k
def
= {g.k : g ∈ G}.
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Remark 3.7 (orbit-stabilizer). The orbit-stabilizer theorem implies that |Gk′ | =
|Gk| for all k′ ∈ G.k, where | · | denotes the cardinality. Indeed, stabilizers of different
elements in an orbit are related by conjugacy, and |G| = |Gk| · |G.k|. More generally,
when Q is a function from Z3 (or a relevant G-invariant subset thereof) to some linear
space, then we have∑

g∈G
Q(g.k) = |Gk|

∑
k′∈G.k

Q(k′) for any k ∈ Z3.(3.7)

Lemma 3.8. Let k ∈ Z3 be arbitrary. We have the following dichotomy:
(a) either αg(k) = 1 for all g ∈ Gk;
(b) or

∑
g∈Gk αg(k) = 0.

Proof. Fix k ∈ Z3. We see from (3.5) that αg1g2(k) = αg1(k)αg2(k) for all
g1, g2 ∈ Gk. Hence we can interpret αg(k) as a group action of the stabilizer subgroup
Gk, acting by multiplication on the unit circle S1 = {z ∈ C : |z| = 1}. We consider
the stabilizer of 1 ∈ S1,

H1
def
= {g ∈ Gk : αg(k) = 1},

and its orbit

O1
def
= {αg(k) : g ∈ Gk}.

By the orbit-stabilizer theorem (we use Remark 3.7, but now for the group Gk-action
αg(k)) ∑

g∈Gk

αg(k) = |H1|
∑
z∈O1

z.(3.8)

The set O1 ⊂ S1 is invariant under multiplication and division. In particular, if
|O1| = N ∈ N, then O1 = {e2πin/N : n = 0, 1, . . . , N − 1}. If N = 1 then we have
H1 = Gk and alternative (a) follows, whereas if N > 1 then we see that

∑
z∈O1

z =∑N−1
n=0 e

2πin/N = 0; hence we conclude from (3.8) that alternative (b) holds.

Remark 3.9. The arguments in Lemma 3.8 are slightly more general than is
strictly needed for the particular symmetry group under consideration in this paper.
Namely, based on Remarks 3.3 and 3.6 we could have restricted to real-valued Fourier
coefficients ck while also a priori restricting the indices k to the ones where k1 +k2 +k3

is even. It that case αg(k) simplifies to an action on R consisting of multiply-
ing by either +1 or −1, as is easily checked from the generators Remark 3.6. We
present the more general argument here since it also applies to other symmetry groups
(e.g., see [28, 24]).

The indices for which alternative (b) in Lemma 3.8 applies are denoted by

Ztriv
def
=
{
k ∈ Z3 :

∑
g∈Gk

αg(k) = 0
}
.

It follows from the next lemma, which is a slight generalization of Lemma 3.8, that
the set Ztriv is invariant under G.

Lemma 3.10. Let k ∈ Z3 be arbitrary. We have the following dichotomy:
(a) either αg(k

′) = 1 for all g ∈ Gk′ and all k′ ∈ G.k;
(b) or

∑
g∈Gk′

αg(k
′) = 0 for all k′ ∈ G.k.
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Proof. Let k ∈ Z3 and k′ ∈ G.k. Let g̃ ∈ G be such that g̃.k = k′. Then a
conjugacy between Gk and Gk′ is given by g → g̃gg̃−1. It follows from Lemma 3.5(c)
that ∑

g∈Gk′

αg(k
′) =

∑
g∈Gk

αg̃gg̃−1(k′) =
∑
g∈Gk

αg(k).

The assertion now follows from Lemma 3.8.

When considering c ∈ Xsym, the indices k in Ztriv are the ones for which ck
necessarily vanishes.

Lemma 3.11. Let c ∈ Xsym. Then ck = 0 for all k ∈ Ztriv.

Proof. Fix k ∈ Z3. For any c ∈ Xsym we have in particular [γgc]k = ck for all
g ∈ Gk. By summing over g ∈ Gk and using that g.k = k for g ∈ Gk, we obtain

|Gk| ck =
∑
g∈Gk

ck =
∑
g∈Gk

(γgc)k =
∑
g∈Gk

αg(k)ck = ck
∑
g∈Gk

αg(k).

If k ∈ Ztriv, then the right-hand side vanishes; hence ck = 0.

It follows from the dichotomy in Lemma 3.8 that k ∈ Ztriv if there is a g ∈ Gk
such that αg(k) 6= 1; hence this construction generalizes the argument in Remark 3.6.

Lemma 3.11 implies that

Xsym ⊂ {c ∈ X : ck = 0 for all k ∈ Ztriv}.
In other words, we may restrict attention to the Fourier coefficients corresponding to
indices in the complement

Zsym
def
= Z3 \ Ztriv.

Remark 3.12. On S1 we have z−1 = z∗, and (z1 +z2)∗ = z−1
1 +z−1

2 . In particular,
Lemma 3.8 implies that∑

g∈Gk

αg(k) =
∑
g∈Gk

α−1
g (k) =

{
0 for k ∈ Ztriv,

|Gk| for k ∈ Zsym.

The sum with the inverses is computed in the code, both to identify the set Ztriv and
to determine |Gk| for k ∈ Zsym.

For c ∈ Xsym the coefficients ck with k ∈ Zsym are not all independent. To take
advantage of this, we choose a fundamental domain of G in Z3:

Zdom = {k ∈ Z3 : 0 ≤ k3 ≤ k2 ≤ k1},(3.9)

i.e., Zdom contains precisely one element of each group orbit. In fact, the arguments
below are independent of which fundamental domain one chooses. The above choice
is the one used in the code. We now define the set of symmetry reduced indices as

Z def
= Zdom ∩ Zsym,

and the space of symmetry reduced variables as

X
def
=
{

(bk)k∈Z : bk ∈ R :
∑
k∈Z

|bk| <∞
}
.

The choice of taking real-valued variables bk stems from Remark 3.3. In slight abuse
of notation we will also interpret ek with k ∈ Z as elements of X. We note that the
action γg on these basis vectors is

(γgek)k′ = αg(k
′)δkβg(k′) = αg(k

′)δβg−1 (k)k′ = αg(k
′)(eg−1.k)k′ ;

hence
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γgek = αg(g
−1.k)eg−1.k .(3.10)

Before we specify the dependency of the coefficients {ck}k∈Zsym on the symmetry
reduced variables {ck}k∈Z for c ∈ Xsym, we derive some additional properties of αg(k)
for k ∈ Zsym.

Lemma 3.13. Let g1, g2 ∈ G and k ∈ Zsym. If g1.k = g2.k, then αg1(k) = αg2(k).

Proof. Since g−1
2 g1.k = k and k ∈ Zsym we have αg−1

2 g1
(k) = 1 by Lemma 3.8(a).

An application of Lemma 3.5(b) concludes the proof.

Definition 3.14. Let k be any element of Zsym and k′ any element in its orbit
G.k. We can choose a g̃ = g̃(k, k′) ∈ G such that g̃.k = k′. For such k and k′ we
define

α̃(k, k′)
def
= α−1

g̃(k,k′)(k) for k ∈ Zsym and k′ ∈ G.k.
This is independent of the choice of g̃ by Lemma 3.13, and clearly

α−1
g (k) = α̃(k, g.k) for all k ∈ Zsym and g ∈ G.(3.11)

We are now ready to symmetrize elements of X. To convert from an element
b ∈ X to an element c ∈ Xsym we apply the symmetrization

σ(b)
def
=
∑
k∈Z

bk
∑

k′∈G.k

α̃(k, k′)ek′ .(3.12)

Lemma 3.15. Let b ∈ X. Then σ(b) ∈ Xsym and σ(b)k = bk for k ∈ Z. Further-
more, σ(b)k ∈ R for all k ∈ Z3.

Proof. For b ∈ X we define

b̃
def
=
∑
k∈Z

bk
|Gk|

ek.

To show that σ(b) ∈ Xsym it suffices to prove that it is the group average of b̃:

σ(b) =
∑
g∈G

γg b̃.(3.13)

Namely, by (3.10) and Lemma 3.5(a),∑
g∈G

γg b̃ =
∑
k∈Z

bk
1

|Gk|
∑
g∈G

γgek

=
∑
k∈Z

bk
1

|Gk|
∑
g∈G

αg(g
−1.k)eg−1.k

=
∑
k∈Z

bk
1

|Gk|
∑
g∈G

αg−1(g.k)eg.k

=
∑
k∈Z

bk
1

|Gk|
∑
g∈G

α−1
g (k)eg.k

=
∑
k∈Z

bk
1

|Gk|
∑
g∈G

α̃(k, g.k)eg.k

=
∑
k∈Z

bk
∑

k′∈G.k

α̃(k, k′)ek′ ,
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where in the penultimate equality we have used (3.11), while the final equality follows
from (3.7) with Q(k′) = α̃(k, k′)ek′ (for fixed k ∈ Z).

The assertion that σ(b)k = bk for k ∈ Z follows directly from (3.12) and
α̃(k, k) = 1. Finally, it follows from Remark 3.9 that α̃(k, k′) ∈ {−1, 1}. Since
bk ∈ R for all k ∈ Z, (3.12) implies that σ(b)k ∈ R for all k ∈ Z3.

The following converse of Lemma 3.15 holds. Note that we do not restrict to
real-valued c here.

Lemma 3.16. Let c ∈ Xsym. Define b =
∑
k∈Z ckek. Then σ(b) = c.

Proof. Let c̃ = c−σ(b). Then c̃ ∈ Xsym and c̃k′ = 0 for all k′ ∈ Z by Lemma 3.15.
Consider any fixed k′ ∈ Zsym; then there exists a k ∈ Z ∩ G.k′. Let g̃ ∈ G be such
that g̃.k = k′. Since c̃ ∈ Xsym we have

αg̃(k)c̃k′ = (γg̃ c̃)k = c̃k = 0.

Since αg̃(k) ∈ S1 this implies that c̃k′ = 0, and since k′ ∈ Zsym was arbitrary, we
conclude that c̃k′ = 0 for all k′ ∈ Zsym. Finally, it then follows from Lemma 3.11 that

c̃ =
∑
k∈Z3

c̃kek =
∑

k∈Ztriv

c̃kek = 0 +
∑

k∈Zsym

c̃kek = 0.

Hence c = σ(b).

On X we use the 1-norm weighted by the multiplicity of each coefficient in the
symmetry class:

‖b‖s
def
=
∑
k∈Z

|G.k| |bk| .

In particular, ‖ek‖s = |G.k| for k ∈ Z. We recall that |G.k| = |G|/|Gk| by
Remark 3.7. This observation is combined with Remark 3.12 to determine the weights
|G.k| in the code. The next lemma shows that the norm ‖b‖s is compatible with the
symmetrization.

Lemma 3.17. For all b ∈ X we have ‖b‖s = ‖σ(b)‖.
Proof. From the definition (3.12) we obtain

‖σ(b)‖ =
∑
k∈Z

∑
k′∈G.k

|bk α̃(k, k′)| =
∑
k∈Z

|bk|
∑

k′∈G.k

|α̃(k, k′)| =
∑
k∈Z

|bk| |G.k| = ‖b‖s ,

since α̃ ∈ S1.

3.3. The functional analytic setup in symmetry reduced variables. We
are now able to reconsider the formulation outlined in subsections 2.2 to 2.4 in the
symmetry reduced variables.

Since the average is fixed (c0 = m), it is convenient to introduce

Z0
def
= Z \ {0}

and
X0

def
= {b ∈ X : b0 = 0}.

Any b ∈ X0 can be expressed as b =
∑
k∈Z0

bkek. Observing that σ maps X0 to X0,
we define the map F with domain X0 by
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Fk(b)
def
= fk(σ(b)),(3.14)

where we recall that fk(c) = hk(me0 + c), with h defined in (2.1) and (2.2). It is
trivial that

f0(c) = 0 for any c ∈ X0;(3.15)

hence we may interpret f as a map from X0 to X0. We note that X0 is invariant under
the action γ of G. Since the PDE (1.1) is equivariant under the symmetries (1.3),
it follows that the map f : X0 → X0, which is the Fourier transform of (1.1), is
equivariant, as formalized in the next lemma.

Lemma 3.18. Let g ∈ G. We have

h(γgc) = γgh(c) for all c ∈ X,(3.16)

f(γgc) = γgf(c) for all c ∈ X0.(3.17)

Proof. Since γge0 = e0, it follows from (2.2) that [h(γgc)]0 = [γgh(c)]0. Since k
is invariant under the action βg, the linear term in (2.1) is equivariant. Equivariance
of the nonlinear term follows from Lemma 3.4. This proves (3.16). Finally, by using
again that γge0 = e0 we infer that

f(γgc) = h(me0 + γgc) = h(γg(me0 + c)) = γgh(me0 + c) = γgf(c),

which establishes (3.17).

Next, we establish the fact that we may use the symmetry reduced variables X0

to obtain symmetric solutions.

Lemma 3.19. Let b ∈ X0. If Fk(b) = 0 for k ∈ Z0, then Fk(b) = 0 for all k ∈ Z3,
and

u(x) = m+
∑
k∈Z3

0

σ(b)k e
ik·x/`(3.18)

is a real-valued solution of (1.1) which is G-symmetric in the sense of Definition 1.1.

Proof. Since σ(b) ∈ Xsym by Lemma 3.15, it follows from (3.17) that γgf(σ(b)) =
f(γgσ(b)) = f(σ(b)); hence f(σ(b)) ∈ Xsym. By Lemma 3.16 this implies that

f(σ(b)) = σ(f̃),(3.19)

where

f̃
def
=
∑
k∈Z

fk(σ(b))ek = f0(σ(b)) +
∑
k∈Z0

Fk(b)ek.

By assumption, Fk(b) = 0 for all k ∈ Z0, and since f0(σ(b)) vanishes by (3.15) as
well, we see that f̃ = 0. We conclude from (3.19) that Fk(b) = fk(σ(b)) = 0 for all
k ∈ Z3.

Finally, let c = me0 + σ(b); then Lemma 3.15 shows that c ∈ Xsym and ck ∈ R
for all k ∈ Z3. Hence it follows from Lemma 3.2 that u(x) =

∑
k∈Z3 cke

ik·x/` is a real-
valued G-symmetric function. Moreover, u(x) solves (1.1) because h(c) = 0, which is
the Fourier equivalent of (1.1).
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3.4. The fixed point operator. To solve the zero finding problem F = 0
on X0, we set up a fixed point operator as in section 2. The role of X0 is taken over
by X0, and the norm ‖ · ‖ is replaced by the weighted norm ‖ · ‖s, which is symmetry
compatible in the sense of Lemma 3.17. The size of the Galerkin projection is

N = N sym(K)
def
= |{k ∈ Z : 0 < k ≤ K}|,

which is substantially smaller than N(K) as defined in (2.10), since we restrict to
symmetry reduced variables. Indeed, the number of independent variables is reduced
by roughly a factor |G| = 96, which splits into a factor roughly 48 due to restricting to
a fundamental domain Zdom (see (3.9)), and a factor roughly 2 thanks to restricting
k to Zsym = Z3 \ Ztriv with Zodd ⊂ Ztriv; see Remark 3.6. The construction of
the operator T : X0 → X0 is essentially unchanged compared to section 2. While
the construction of the approximate inverse in the symmetrized setting is essentially
the same as in section 2, for clarity we will denote it by As and write

T (b) = b−AsF (b).

Theorem 2.1 remains valid, and by Lemma 3.19 this produces a symmetric solution
of (1.1). In subsections 3.5 and 3.6 we discuss the changes that the symmetric setting
causes in the explicit expression for the bounds Y and Z(r), respectively.

3.5. The bound Y . There are essentially no changes compared to subsection 2.3
in the computation of the bound on the residue, except that we need to take into
account the symmetry respecting norm:

Y = ↑
∑

k∈Z0,k≤3K

|G.k|
∣∣[AsF (b)]k

∣∣ .(3.20)

3.6. The bound Z. We will comment only on the changes compared to sub-
section 2.4 due to the symmetric setting. The most important change is in the
formula (2.21) for the derivative. It follows from the definition of F in (3.14) and
the formula (3.12) for the symmetrization σ that

DFk(b)ek′ = δkk′λk + 3`−2k2
∑

k′′∈G.k′
α̃(k′, k′′)〈(σ(me0 + b))2〉k−k′′ for k, k′ ∈ Z0.

Taking into account this new expression for the Jacobian, the bound Q1 is essentially
unchanged, except that we need to use the weighted norm. We obtain

Q1 = ↑ max
k′∈Z0,k′≤K

1

|G.k′|
∑

k∈Z0,k≤K

|G.k|
∣∣(IN −As

NJN )kk′
∣∣.(3.21)

For the bound Q2 we observe that, with k, k′ ∈ Z,

([DF (b)− J ]ek′)k =

{
0 for k′,k ≤ K,
3`−2k2∑

k′′∈G.k′ α̃(k′, k′′)〈(σ(me0 + b))2〉k−k′′ , otherwise.

(3.22)

Note that ([DF (b) − J ]ek′)k = 0 for k ≤ K and k′ > 3K. We thus use the same
splitting in the tail k′ > 3K and the finite part k′ ≤ 3K as in section 2. Taking the
symmetry reduced variables into account, we obtain

Q̃2 = ↑ max
k′∈Z0,k′≤3K

1

|G.k′|
∥∥As[DF (b)− J ]ek′

∥∥
s
,
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which is evaluated using (3.22). We obtain

Q2 = max{Q̃2, ↑3CK‖〈(σ(me0 + b))2〉‖},(3.23)

with CK defined in (2.26).
Next, for Q3 we again follow the arguments of section 2. We define, for q ∈ X,

k ∈ Z0,

(P̃ q)k
def
= 6`−2k2〈σ(me0 + b)σ(q)〉k,

and we estimate the norm of AsP̃ by (using Lemma 3.17)

Q3,1 = max{Q̃3,1, ↑6CK‖me0 + b‖s},(3.24)

where

Q̃3,1 = ↑ max
k′∈Z,k′≤2K

1

|G.k′|
‖AsP̂ (k′)‖s

with
P̂k(k′) = 6`−2k2

∑
k′′∈G.k′

α̃(k′, k′′)(σ(me0 + b))k−k′′ for k′ ∈ Z.

Finally, by using analogous arguments the quadratic term in r is estimated by

Q3,2 = max{Q̃3,2, ↑3CK},(3.25)

where

Q̃3,2 = ↑ max
k′∈Z,0<k′≤K

1

|G.k′|
‖AsR̂(k′)‖s

with
R̂k(k′) = 3`−2k2δkk′ .

3.7. Extensions. Whenever we mentioned specific generators, we have focused
on space group 230. The other example used in this paper is space group 229, which
is generated by

Sσx = (x2, x3, x1),

Sφx
def
= (x2, x1, x3),

Sψx
def
= (−x1, x2, x3),

S2
τx =

(
x1 + L

2 , x2 + L
2 , x3 + L

2

)
.

The conversion to the group action on Fourier space via Remark 3.1 is straightfor-
ward. We note that Sπ (see (1.4)), is an element of the group; hence we may restrict
attention to real Fourier coefficients as for the space group 230. Furthermore, the
same fundamental domain Zdom can be chosen as for space group 230.

Although we focus in this paper on the two space groups 229 and 230 only, the
symmetry preserving formulation in this section can be applied much more generally
(e.g., see [28, 24]). If the symmetries are such that we may not restrict to real Fourier
coefficients (i.e., in case (x1, x2, x3)→ (−x1,−x2,−x3) is not a symmetry), then there
are two ways to proceed to include the symmetry coming from the real-valuedness of
u(x). The first is to simply not include this symmetry in G (i.e., ignoring c∗−k = ck).
A disadvantage of this approach is that the number of symmetry reduced variables is
suboptimal. An advantage is that one can still work over complex numbers. The final
symmetry of the solution (c∗−k = ck, i.e., the solution u is real) can then be recovered
via the equivariance arguments in Remark 2.3.
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The second possibility is to include the symmetry with action (k1, k2, k3) →
(−k1,−k2,−k3) on Z3 in G, with corresponding action ck → c∗−k on the Fourier coef-
ficients. This leads to an optimal reduction in the number of symmetry reduced vari-
ables (and thus reduced memory usage). However, one needs to separate all Fourier
coefficients into real and imaginary parts and work with those real variables. This is
a little more cumbersome than working with complex variables. We did not need to
pursue either of these approaches for the symmetry groups under consideration.

3.8. Symmetry in the code. The main symmetry operation in the code is
averaging over the group action, which is performed in symmetrize.m. In the notation
of this paper, it is a function S with as input an element of XN (see (2.11)), and as
output an element of XN ∩Xsym. To be precise,

S(c)
def
=
∑
g∈G

γgc

=
∑
g∈G

∑
k≤K

ck α
−1
g (k) eg.k.(3.26)

We note that S is closely related to the symmetrization σ defined in (3.12); see
also (3.13). In particular, interpreting b =

∑
k∈Z,k≤K bkek ∈ X as an element of

XN , we have

σ(b)k =
S(b)k
|Gk|

for all k ∈ Z3.

The effectiveness of the code is based on the following property of S. Let

1dom
def
=

∑
k∈Zdom

ek

be the indicator function of the fundamental domain. Fix any k′ ∈ Z3, and let
k = G.k′ ∩ Zdom. Then

S(1dom)k′ =

{
0, k′ ∈ Ztriv,

α̃(k, k′) |Gk′ |, k′ ∈ Zsym.

Namely, let g̃ be such that g̃.k = k′. Then using (3.26), the orbit-stabilizer theorem,
the multiplication property (3.5) of α (and α−1), Lemma 3.8, Remark 3.12, and (3.11),
we obtain

S(1dom)k′ =
∑

g∈G,g.k=k′

α−1
g (k)

=
∑
g∈Gk

α−1
g̃g (k)

=
∑
g∈Gk

α−1
g̃ (g.k)α−1

g (k)

= α−1
g̃ (k) ·

{
0 k ∈ Ztriv

|Gk| k ∈ Zsym

=

{
0 k′ ∈ Ztriv

α̃(k, k′) |Gk′ | k′ ∈ Zsym.

As a consequence |S(1dom)k′ | = |Gk′ | for all k′ ∈ Zsym. In particular, S(1dom)0 equals
the order of the symmetry group.
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4. Results.

4.1. Implementation. Given a numerically computed approximation ū(x),
expressed in terms of finitely many Fourier modes, of a solution to (1.1), in order
to prove that a nearby (true) solution û(x) exists (c.f. Remark 2.2 and (2.19)), we
proceed as follows.

1. Compute a numerical approximation of the exact finite Jacobian JN .
2. Numerically invert the finite Jacobian to find As

N .
3. Define the parameters m, γ and l and As

N as interval objects.
4. Evaluate the residual bound Y using (3.20).
5. Evaluate the terms Q1, Q2, Q3,1, and Q3,2 as defined in (3.21), (3.23), (3.24),

and (3.25), respectively.
6. Form the radii polynomial p(r) = Y + r(Q1 +Q2 + rQ3,1 + r2Q3,2)− r.
7. Seek the roots r−, r+ > 0 such that p(r) < 0 for r− < r < r+.

If the last step is succesful, then we have proven the existence of a solution û(x),
satisfying

‖û(x)− ū(x)‖∞ ≤ r−.

If not, we extend the numerical approximate solution to a larger value of K (more
Fourier modes), iterate Newton’s method until convergence, and try again. This
procedure does not lead to the smallest possible r−, but rather focuses on obtaining
the “cheapest” proof (small K). If our goal would be to minimize r− we could simply
increase K (at computational cost of course).

We enforce the symmetry of the solution as outlined in section 3. This does not
just ensure that the proven solution has the required symmetry. It also significantly
reduces the computational cost. In particular, we compute on the Fourier coefficients
(bk)k∈Z,k≤K only. For space groups 230 this reduces the number of variables by
roughly a factor 200, for example, with K = 37, only 2221 modes are used out of
421,875 possible. This also reduces the size of the matrices JN and As

N by a factor
O(104). One crucial aspect of the effective algorithmic implementation of both the
symmetry reduced indices and symmetry reduced variables is explained in subsection
3.8. The general algorithm is the same for all symmetry groups. With the basic
structure in place, implementing each additional space group only requires a few
additional lines of code (generating all the elements of the group action).

We used this method to prove the existence of both double gyroids from space
group 230 (see Figure 4.1), and bcc-packed spheres from space group 229 (see
Figure 4.2). Additionally, “exotic” symmetric stationary states were proven to ex-
ist; see Figure 4.3. The physical and computational parameters for these proofs can
be found in subsection 4.2.

All proofs were implemented in Matlab using the interval toolbox IntLab [19, 20].
The required estimates and bounds for the fixed point proofs are all verified with
interval arithmetic to avoid any possible floating point errors. Verifiable data files,
including all parameter values used in the computational proofs, and code are available
in [29].

4.2. Computational details. All computations were performed on an early
2016 MacBook taking between a few seconds and minutes to find small finite approx-
imations. Running the proof requires more modes and takes between a few minutes
and several hours, scaling like O(K6).

To find double gyroid and bcc-packed sphere solutions, we started with parameters
values (m, γ) near the bifurcation point (0, 2). There, to leading order, the Fourier
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Fig. 4.1. Double gyroids. The parameters m and γ both increase from left to right. In the
bottom row the values of m are larger than in the top row; see Table 4.1 for parameter values. The
level sets in the top row are plotted at u(x, y, z) = −m, while in the bottom to we selected the level set
u(x, y, z) = −2m. These levels are chosen for display purposes only. Each image has been rotated
to give a slightly different view.

Fig. 4.2. bcc-packed structures. The parameters m and γ both increase from left to right. In
the bottom row the values of m are larger than in the top row; see Table 4.1 for parameter values.
The level sets are all plotted at u(x, y, z) = −m for clarity and consistency. We note that the upper
row would show disconnected (spherical) structures for different level sets.

coefficients can be computed by hand. We then continued in the parameters to obtain
solutions for larger parameter vales.

The parameter values m, γ and ` for the proven double gyroids and proven
bcc-packed spheres are collected in Table 4.1. The values of K used in the proofs
are also given there. These values of K are near minimal for the proofs to work, but
in some cases K − 1 may also have been sufficient. More modes are required as γ
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Fig. 4.3. Exotic profiles from space group 230 computed at m = 0.2, γ = 3. Top: bumpy
orthogonal cylinders (l = 1.6,K = 35) and lozenges (l = 2.3,K = 35). Bottom: mixed spheres and
cylinders (l = 2.3,K = 37) and deformed double gyroids with right angle intersections (l = 1.9,K =
27). All profiles have been verified rigorously.

Table 4.1
Parameter values for double gyroids and bcc-packed spheres. The labels refer to Figures 4.1

and 4.2.

Double gyroids
Label m γ ` K

(a) 0.02 2.1 1.75 9
(b) 0.04 3 1.5 19
(c) 0.05 4 1.3 27
(d) 0.06 5 1.2 37
(e) 0.1 2.1 1.75 9
(f) 0.25 3 1.5 19
(g) 0.3 4 1.3 27
(h) 0.35 5 1.2 37

bcc-packed spheres
Label m γ ` K

(a) 0.02 2.1 1 4
(b) 0.04 3 0.8 11
(c) 0.05 4 0.75 13
(d) 0.06 5 0.7 19
(e) 0.1 2.1 1 4
(f) 0.25 3 0.8 9
(g) 0.3 4 0.75 13
(h) 0.35 5 0.7 17

increases, as the solutions develop sharper transitions between u > m and u < m (in
the limit γ → ∞ solutions tend to profiles which are u = ±1 almost everywhere).
Note that we need more modes to prove the double gyroid than for the spheres.

In addition to double gyroids and spheres, by starting Newton’s method with
random initial data we also encountered a number of more exotic profiles, showcasing
the richness of the model and the complexity of the energy landscape. In Figure 4.3
we present some of the more interesting ones we found in space group 230. These
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profiles were all proven to exist with m = 0.2 and γ = 3, whilst the other parameters
varied; see the caption of Figure 4.3. Of particular note are the mixture of cylinders
and spheres and the deformed double gyroid. The latter has the same triple junctions
as the double gyroid but the intersections occur at right angles. The interlocking
cylinders may be related to the “woodpile” solution mentioned in [15].

5. Conclusions and future work. We have presented the first rigorous proof
of existence of double gyroid solutions for the stationary Ohta–Kawasaki problem in
three dimensions, as well as bcc-packed spheres and additional exotic structures. This
work is the first step towards rigorously computing the (minimal) energy landscape of
the Ohta–Kawasaki functional in three dimensions. In future work we plan to extend
this methodology to additional space groups and, once it is sufficiently efficient, use it
to rigorously study the phase diagram of energy minimizing states, starting from the
organizing center m = 0, γ = 2 and subsequently progressing to larger values of m and
γ. To do this we need also to compute the energies with rigorous error bounds, work
in general rectangular domains, and optimize over the domain sizes. Any computation
of the energy landscape also needs a method to verify local stability. We are hopeful
that this can be dealt with naturally within the rigorous computational framework
laid out in the current paper.

We have developed a novel method to enforce the physically observed symmetries
in a computer-assisted proof setting. The algorithm works for general (symmetry)
group actions in Fourier space, hence it is a natural next step to extend the applica-
bility of this technique to other PDE problems with multiple symmetries.

Finally, some of the proofs require both patience and/or a considerable amount of
memory. Only limited effort was made to optimize the code in these respects. Further
work will include improving these performance measures. For example, calculating
the nonlinear terms used an finite Fourier transform (FFT) of an array of size N =
27(2K+1)3. For K = 50 this leads to arrays of about 1GB in memory, growing about
5% per unit increase in K. This is a considerable problem as for small γ solutions are
very smooth but quickly approach the sharp front regime as γ increases. To resolve
this we need larger values of K and the tails (in K) decay more slowly requiring
even more modes. Reliably computing beyond γ = 10 would require approximately
K > 75. Exploiting symmetry in the FFT algorithm is possible and could make the
routine considerably more efficient (in memory and possibly runtime), but is beyond
the scope of the current work.

Another avenue for refinement is to use different bounds in setting up the radii
polynomial. It can be beneficial to use bounds which are slightly less sharp, and
slightly more cumbersome to write down, but which can considerably reduce the
computational effort (in particular for the bound Q2). Although we did not pur-
sue that here, mainly for expository reasons, we intend to include such algorithmic
improvements in future efforts.
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