44 research outputs found

    Genome-wide identification of genes regulating DNA methylation using genetic anchors for causal inference

    Get PDF
    BACKGROUND: DNA methylation is a key epigenetic modification in human development and disease, yet there is limited understanding of its highly coordinated regulation. Here, we identify 818 genes that affect DNA methylation patterns in blood using large-scale population genomics data. RESULTS: By employing genetic instruments as causal anchors, we establish directed associations between gene expression and distant DNA methylation levels, while ensuring specificity of the associations by correcting for linkage disequilibrium and pleiotropy among neighboring genes. The identified genes are enriched for transcription factors, of which many consistently increased or decreased DNA methylation levels at multiple CpG sites. In addition, we show that a substantial number of transcription factors affected DNA methylation at their experimentally determined binding sites. We also observe genes encoding proteins with heterogenous functions that have widespread effects on DNA methylation, e.g., NFKBIE, CDCA7(L), and NLRC5, and for several examples, we suggest plausible mechanisms underlying their effect on DNA methylation. CONCLUSION: We report hundreds of genes that affect DNA methylation and provide key insights in the principles underlying epigenetic regulation

    Genome-wide identification of genes regulating DNA methylation using genetic anchors for causal inference

    Get PDF
    Background DNA methylation is a key epigenetic modification in human development and disease, yet there is limited understanding of its highly coordinated regulation. Here, we identify 818 genes that affect DNA methylation patterns in blood using large-scale population genomics data. Results By employing genetic instruments as causal anchors, we establish directed associations between gene expression and distant DNA methylation levels, while ensuring specificity of the associations by correcting for linkage disequilibrium and pleiotropy among neighboring genes. The identified genes are enriched for transcription factors, of which many consistently increased or decreased DNA methylation levels at multiple CpG sites. In addition, we show that a substantial number of transcription factors affected DNA methylation at their experimentally determined binding sites. We also observe genes encoding proteins with heterogenous functions that have widespread effects on DNA methylation, e.g.,NFKBIE,CDCA7(L), andNLRC5, and for several examples, we suggest plausible mechanisms underlying their effect on DNA methylation. Conclusion We report hundreds of genes that affect DNA methylation and provide key insights in the principles underlying epigenetic regulation.Development and application of statistical models for medical scientific researc

    Age-related accrual of methylomic variability is linked to fundamental ageing mechanisms

    Get PDF
    Background: Epigenetic change is a hallmark of ageing but its link to ageing mechanisms in humans remains poorly understood. While DNA methylation at many CpG sites closely tracks chronological age, DNA methylation changes relevant to biological age are expected to gradually dissociate from chronological age, mirroring the increased heterogeneity in health status at older ages. Results: Here, we report on the large-scale identification of 6366 age-related variably methylated positions (aVMPs) identified in 3295 whole blood DNA methylation profiles, 2044 of which have a matching RNA-seq gene expression profile. aVMPs are enriched at polycomb repressed regions and, accordingly, methylation at those positions is associated with the expression of genes encoding components of polycomb repressive complex 2 (PRC2) in trans. Further analysis revealed trans-associations for 1816 aVMPs with an additional 854 genes. These trans-associated aVMPs are characterized by either an age-related

    Controlling bias and inflation in epigenome- and transcriptome-wide association studies using the empirical null distribution

    Get PDF
    We show that epigenome- and transcriptome-wide association studies (EWAS and TWAS) are prone to significant inflation and bias of test statistics, an unrecognized phenomenon introducing spurious findings if left unaddressed. Neither GWAS-based methodology nor state-of-the-art confounder adjustment methods completely remove bias and inflation. We propose a Bayesian method to control bias and inflation in EWAS and TWAS based on estimation of the empirical null distribution. Using simulations and real data, we demonstrate that our method maximizes power while properly controlling the false positive rate. We illustrate the utility of our method in large-scale EWAS and TWAS meta-analyses of age and smoking

    Refining Attention-Deficit/Hyperactivity Disorder and Autism Spectrum Disorder Genetic Loci by Integrating Summary Data From Genome-wide Association, Gene Expression, and DNA Methylation Studies

    Get PDF
    Background: Recent genome-wide association studies (GWASs) identified the first genetic loci associated with attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD). The next step is to use these results to increase our understanding of the biological mechanisms involved. Most of the identified variants likely influence gene regulation. The aim of the current study is to shed light on the mechanisms underlying the genetic signals and prioritize genes by integrating GWAS results with gene expression and DNA methylation (DNAm) levels. Methods: We applied summary-data–based Mendelian randomization to integrate ADHD and ASD GWAS data with fetal brain expression and methylation quantitative trait loci, given the early onset of these disorders. We also analyzed expression and methylation quantitative trait loci datasets of adult brain and blood, as these provide increased statistical power. We subsequently used summary-data–based Mendelian randomization to investigate if the same variant influences both DNAm and gene expression levels. Results: We identified multiple gene expression and DNAm levels in fetal brain at chromosomes 1 and 17 that were associated with ADHD and ASD, respectively, through pleiotropy at shared genetic variants. The analyses in brain and blood showed additional associated gene expression and DNAm levels at the same and additional loci, likely because of increased statistical power. Several of the associated genes have not been identified in ADHD and ASD GWASs before. Conclusions: Our findings identified the genetic variants associated with ADHD and ASD that likely act through gene regulation. This facilitates prioritization of candidate genes for functional follow-up studies

    Autosomal genetic variation is associated with DNA methylation in regions variably escaping X-chromosome inactivation

    Get PDF
    X-chromosome inactivation (XCI), i.e., the inactivation of one of the female X chromosomes, restores equal expression of X-chromosomal genes between females and males. However, ~10% of genes show variable degrees of escape from XCI between females, although little is known about the causes of variable XCI. Using a discovery data-set of 1867 females and 1398 males and a replication sample of 3351 females, we show that genetic variation at three autosomal loci is associated with female-specific changes in X-chromosome methylation. Through cis-eQTL expression analysis, we map these loci to the genes SMCHD1/METTL4, TRIM6/HBG2, and ZSCAN9. Low-expression alleles of the loci are predominantly associated with mild hypomethylation of CpG islands near genes known to variably escape XCI, implicating the autosomal genes in variable XCI. Together, these results suggest a genetic basis for variable escape from XCI and highlight the potential of a population genomics approach to identify genes involved in XCI

    Genome-wide identification of directed gene networks using large-scale population genomics data

    Get PDF
    Identification of causal drivers behind regulatory gene networks is crucial in understanding gene function. Here, we develop a method for the large-scale inference of gene–gene interactions in observational population genomics data that are both directed (using local genetic instruments as causal anchors, akin to Mendelian Randomization) and specific (by controlling for linkage disequilibrium and pleiotropy). Analysis of genotype and whole-blood RNA-sequencing data from 3072 individuals identified 49 genes as drivers of downstream transcriptional changes (Wald P < 7 × 10−10), among which transcription factors were overrepresented (Fisher’s P = 3.3 × 10−7). Our analysis suggests new gene functions and targets, including for SENP7 (zinc-finger genes involved in retroviral repression) and BCL2A1 (target genes possibly involved in auditory dysfunction). Our work highlights the utility of population genomics data in deriving directed gene expression networks. A resource of trans-effects for all 6600 genes with a genetic instrument can be explored individually using a web-based browser

    Autosomal genetic variation is associated with DNA methylation in regions variably escaping X-chromosome inactivation

    Get PDF
    X-chromosome inactivation (XCI), i.e., the inactivation of one of the female X chromosomes, restores equal expression of X-chromosomal genes between females and males. However, ~10% of genes show variable degrees of escape from XCI between females, although little is known about the causes of variable XCI. Using a discovery data-set of 1867 females and 1398 males and a replication sample of 3351 females, we show that genetic variation at three autosomal loci is associated with female-specific changes in X-chromosome methylation. Through cis-eQTL expression analysis, we map these loci to the genes SMCHD1/METTL4, TRIM6/HBG2, and ZSCAN9. Low-expression alleles of the loci are predominantly associated with mild hypomethylation of CpG islands near genes known to variably escape XCI, implicating the autosomal genes in variable XCI. Together, these results suggest a genetic basis for variable escape from XCI and highlight the potential of a population genomics approach to identify genes involved in XCI

    Improving Phenotypic Prediction by Combining Genetic and Epigenetic Associations

    Get PDF
    We tested whether DNA-methylation profiles account for inter-individual variation in body mass index (BMI) and height and whether they predict these phenotypes over and above genetic factors. Genetic predictors were derived from published summary results from the largest genome-wide association studies on BMI (n ∼ 350,000) and height (n ∼ 250,000) to date. We derived methylation predictors by estimating probe-trait effects in discovery samples and tested them in external samples. Methylation profiles associated with BMI in older individuals from the Lothian Birth Cohorts (LBCs, n = 1,366) explained 4.9% of the variation in BMI in Dutch adults from the LifeLines DEEP study (n = 750) but did not account for any BMI variation in adolescents from the Brisbane Systems Genetic Study (BSGS, n = 403). Methylation profiles based on the Dutch sample explained 4.9% and 3.6% of the variation in BMI in the LBCs and BSGS, respectively. Methylation profiles predicted BMI independently of genetic profiles in an additive manner: 7%, 8%, and 14% of variance of BMI in the LBCs were explained by the methylation predictor, the genetic predictor, and a model containing both, respectively. The corresponding percentages for LifeLines DEEP were 5%, 9%, and 13%, respectively, suggesting that the methylation profiles represent environmental effects. The differential effects of the BMI methylation profiles by age support previous observations of age modulation of genetic contributions. In contrast, methylation profiles accounted for almost no variation in height, consistent with a mainly genetic contribution to inter-individual variation. The BMI results suggest that combining genetic and epigenetic information might have greater utility for complex-trait prediction

    Skewed X-inactivation is common in the general female population

    Get PDF
    X-inactivation is a well-established dosage compensation mechanism ensuring that X-chromosomal genes are expressed at comparable levels in males and females. Skewed X-inactivation is often explained by negative selection of one of the alleles. We demonstrate that imbalanced expression of the paternal and maternal X-chromosomes is common in the general population and that the random nature of the X-inactivation mechanism can be sufficient to explain the imbalance. To this end, we analyzed blood-derived RNA and whole-genome sequencing data from 79 female children and their parents from the Genome of the Netherlands project. We calculated the median ratio of the paternal over total counts at all X-chromosomal heterozygous single-nucleotide variants with coverage ≥10. We identified two individuals where the same X-chromosome was inactivated in all cells. Imbalanced expression of the two X-chromosomes (ratios ≤0.35 or ≥0.65) was observed in nearly 50% of the population. The empirically observed skewing is explained by a theoretical model where X-inactivation takes place in an embryonic stage in which eight cells give rise to the hematopoietic compartment. Genes escaping X-inactivation are expressed from both alleles and therefore demonstrate less skewing than inactivated genes. Using this characteristic, we identified three novel escapee genes (SSR4, REPS2, and SEPT6), but did not find support for many previously reported escapee genes in blood. Our collective data suggest that skewed X-inactivation is common in the general population. This may contribute to manifestation of symptoms in carriers of recessive X-linked disorders. We recommend that X-inactivation results should not be used lightly in the interpretation of X-linked variants
    corecore