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Abstract

Background: DNA methylation is a key epigenetic modification in human
development and disease, yet there is limited understanding of its highly
coordinated regulation. Here, we identify 818 genes that affect DNA methylation
patterns in blood using large-scale population genomics data.

Results: By employing genetic instruments as causal anchors, we establish directed
associations between gene expression and distant DNA methylation levels, while
ensuring specificity of the associations by correcting for linkage disequilibrium and
pleiotropy among neighboring genes. The identified genes are enriched for
transcription factors, of which many consistently increased or decreased DNA
methylation levels at multiple CpG sites. In addition, we show that a substantial
number of transcription factors affected DNA methylation at their experimentally
determined binding sites. We also observe genes encoding proteins with
heterogenous functions that have widespread effects on DNA methylation, e.g.,
NFKBIE, CDCA7(L), and NLRC5, and for several examples, we suggest plausible
mechanisms underlying their effect on DNA methylation.

Conclusion: We report hundreds of genes that affect DNA methylation and provide
key insights in the principles underlying epigenetic regulation.

Keywords: DNA methylation, Epigenetic regulation, Transcription factor, Chromatin,
Genetic instrumental variable, Functional genomics, Pleiotropy, Causal inference

Background
The epigenome is fundamental to development and cell differentiation. Dysregulation

of the epigenome is a hallmark of many diseases, ranging from rare developmental dis-

orders to common complex diseases and aging [1–3]. The epigenome is highly dy-

namic and is extensively modified and remodeled in response to external and internal

stimuli [4]. However, the networks underlying these highly coordinated epigenetic

modifications remain to be fully elucidated. Hence, the systematic identification of
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genes that are involved in epigenetic regulation and the determination of their respect-

ive target sites will be a crucial step towards an in-depth understanding of epigenomic

(dys)regulation.

DNA methylation is a key component of the epigenome that controls, stabilizes, and/

or marks the transcriptional potential of a genomic region [5]. It involves the addition

of a methyl group onto cytosines, mainly at CpG dinucleotides. Although considerable

research has been devoted to studying the enzymes that write, maintain, and erase

DNA methylation (i.e., DNMTs and TETs) [6], less is known about factors that are

otherwise involved in the regulation of DNA methylation. These may include proteins

and non-coding RNAs that regulate, interact with, or recruit the DNA methylation ma-

chinery [7]. Transcription factors, for example, do not only act indirectly by regulating

the transcription of epigenetic genes, but have also been indicated to control the DNA

methylation state of their target sites by recruiting or repelling DNMT or TET proteins

[8, 9]. Experimental evidence for genes involved in the regulation of DNA methylation

has been mainly obtained from in vitro experiments focusing on single genes or is

based on animal models [8, 10–12]. A comprehensive genome-wide survey of genes af-

fecting DNA methylation in humans is currently lacking.

We recently developed a method to identify directed and specific gene-gene interac-

tions in population omics data [13]. Instead of using measured gene expression, this

method builds upon previous work in which genetic variants were utilized as causal an-

chors for gene expression [14, 15]. This allows for the identification of directed and un-

confounded associations within observational data. Here, we adapt this method and

identified 818 genes that affect DNA methylation using genomic, methylomic, and tran-

scriptomic data in up to 4056 individuals [16, 17]. Many of these genes were previously

unknown to be involved in the regulation of DNA methylation, thereby providing new

targets for studies into epigenomic regulation, evaluation of the function of disease

genes, and additional interpretation of epigenome-wide association studies.

Results
Identification of genes that affect DNA methylation

In order to identify genes that affect DNA methylation, we employed an approach that

consists of two parts. First, we identified predictive genetic variants for the expression

of each gene in our data and aggregated these into single predictive scores termed gen-

etic instruments (GIs) [13]. Second, we used these GIs as causal anchors to establish di-

rected effects of gene expression on genome-wide DNA methylation levels, while

ensuring that these associations were specific by accounting for linkage disequilibrium

(LD) and pleiotropy among neighboring GIs (see Fig. 1 for an overview of the succes-

sive steps in the analysis).

To construct the genetic instruments, we used data on 3357 unrelated individuals

with available genotype and RNAseq data derived from whole blood. We focused the

analysis on 11,830 expressed genes (median counts per million > 1). In the training set

(1/3 of the data, 1119 individuals), we obtained a GI for the expression of each gene,

which consisted of 1 or more SNPs selected by applying LASSO regression to nearby

genetic variants [18]. We corrected the expression data for age, sex, biobank, blood cell

composition, and five principal components. We then assessed the predictive ability of
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the constructed GIs in a separate test set of 2238 individuals by predicting their gene

expression values using the GIs derived in the training set. Of the 11,830 tested GIs,

8644 were sufficiently predictive of expression levels in the test set to serve as valid GIs

(F-statistic > 10, median R2 = 0.04, Additional file 1: Table S1) [19].

Next, we tested for an association between all 8644 predictive GIs and genome-wide

DNA methylation levels at 428,126 autosomal CpG sites in trans (> 10Mb distance

from the tested gene), using genotype and DNA methylation data (Illumina 450k array)

derived from whole blood of 4056 unrelated individuals (3251 samples overlapped with

RNAseq data). These associations were computed using linear regression, while cor-

recting for age, sex, blood cell composition, biobank, and five principal components,

and test statistics were corrected for bias and inflation [20]. These analyses resulted in

directed associations between 2223 genes and 5284 CpGs (Bonferroni correction, P <

1.4 × 10−11; Additional file 2: Table S2). Although directed, the associations resulting

from this analysis may not be specific for a single gene as linkage disequilibrium (LD)

and/or pleiotropy may result in GIs that are predictive of multiple neighboring genes

Fig. 1 Flowchart showing the successive steps leading to the identification of 818 genes that affect DNA
methylation in trans
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[13]. We therefore adjusted all significant GI-CpG pairs for all neighboring GIs (< 1

Mb) to account for correlation induced by LD/pleiotropy among neighboring genes.

This enabled us to identify the specific gene in a region driving the directed association.

Next, we removed genes with potential residual pleiotropic effects on the expression of

neighboring significant genes (F > 5) (together, these two steps led to the removal of

1387 genes and 2844 CpGs; Additional file 3: Table S3). Finally, we excluded effects of

long-range pleiotropy and LD (by rerunning the analysis for CpGs affected by multiple

genes from the same chromosome, including all these genes in the model; removing 6

genes and 13 CpGs), and residual effects of white blood cell composition (by correcting

for genetic variants known to be associated with WBC; removing 12 genes, 43 CpGs,

Additional file 4: Fig. S1) [21, 22].

The final result of our step-wise analysis was a collection of 818 genes with directed

and specific associations with DNA methylation levels of 2384 unique target CpGs in

trans (Bonferroni correction, P < 1.4 × 10−11; (Additional file 5: Table S4). The target

CpGs were located in 1915 distinct regions (consecutive probes within < 1 kb), and for

genes affecting DNA methylation at more than 1 CpG site, on average 33% of the target

CpGs were co-localized (< 1 kb) with at least one other target CpG (Additional file 6:

Table S5).

The validity of these results was corroborated by a comparison with previous trans-

methylation QTL studies in blood. Although not designed to infer genes that are specif-

ically responsible for associations, such studies are expected to produce partly overlap-

ping outcomes. We found that 1638 target CpGs identified in our study were reported

in three previous independent trans-meQTL studies (OR = 103; P < 1 × 10−32) [23–25].

For the great majority of overlapping CpGs, the corresponding GI and trans-meQTL

SNP were in close proximity (Additional file 4: Table S6, Additional file 7: Table S7,

Additional file 8: Table S8, Additional file 9: Table S9).

We performed post hoc power analyses to assess the power we had to detect varying

effect sizes for each gene tested (Additional file 4: Fig. S2 and Additional file 1: Table

S1) [26]. In the uncorrected analysis (not corrected for neighboring GIs), we had > 0.8

power to detect effect sizes of 1 SD (1 standard deviation change in DNA methylation

upon 1 standard deviation change in expression) for about 85% of the tested genes, and

for about 50% of the genes (4475), we had > 0.8 power to detect effect sizes of 0.5 SD

(Additional file 4: Fig. S2). Correcting for neighboring GIs is required to identify spe-

cific genes (instead of genomic regions with multiple correlated genes), but does so at

the cost of reduced power. Correction left 5685 genes (compared to 7299) with power >

0.8 to detect effect sizes of 1 SD and left 3061 genes (compared to 4475) with > 0.8

power to detect effect sizes of 0.5 SD (Additional file 4: Fig. S2). This analysis shows

that for the majority of tested genes, we were well-powered to detect large effects, and

for over a third of the genes, we were well-powered to detect medium effect sizes. We

included the explained variance and power across varying effect sizes for each gene in

Additional file 1: Table S1.

Function of genes that affect DNA methylation in trans

As shown in Fig. 2, a considerable fraction (N = 308) of the identified genes affected

multiple CpGs in trans (Additional file 6: Table S5). We observed that these genes,
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often consistently, either increased or decreased DNA methylation at their target CpGs

(Fig. 2a). For 30 out of 37 genes that were associated with 10 or more CpGs, the direc-

tion of effect was significantly skewed towards increased (19 genes) or decreased (11

genes) methylation levels, respectively (binomial test, FDR < 0.05, Additional file 10:

Table S10). We first considered two previously hypothesized molecular roles of the

identified genes: transcription factors [27] and core epigenetic factors [6], which we will

now discuss in more detail.

Transcription factors

We found that the identified genes (818) were enriched for transcription factors (TFs)

(N = 127, odds ratio = 2.74, P = 3.1 × 10−18) using a manually curated list of TFs [27].

This enrichment was not explained by TFs having stronger genetic instruments; in fact,

non-TFs had stronger instruments than TFs (P = 6.3 × 10−8; Additional file 4: Fig. S3).

As shown in Fig. 3a, this enrichment was driven by TFs that were associated with mul-

tiple target CpGs, and there was a stronger TF enrichment with an increasing number

of target CpGs. In total, 80 (63%) of the significant TFs in our data affected more than

1 CpG site, which was a significant enrichment compared to the non-TF genes (OR =

3.45, P = 3.1 × 10−10). We further found that the target CpGs of TFs frequently co-

localized. For TFs affecting more than 1 CpG, on average, 45% of the target CpGs were

co-localized with at least one other target CpG (< 1 kb), which was a significant enrich-

ment compared to non-TFs (average non-TFs = 25%, OR = 2.5, P = 2.2 × 10−21). The

majority of TFs either consistently increased or consistently decreased DNA methyla-

tion at their target CpGs: a significant skew in the direction of effect was present for 20

out of 23 TFs that were associated with at least 10 CpGs (6 consistently decreased, and

Fig. 2 A considerable fraction of the identified genes (N = 308) affected multiple target CpGs in trans. a
Each dot represents a gene with trans DNA methylation effects. The x-axis shows the number of affected
target CpGs with decreased methylation levels upon increased gene expression, and the y-axis shows the
number of affected target CpGs with increased methylation levels upon increased gene expression. The
figure in the right upper corner is a zoomed-in version in which only genes that affect less than 25 CpG
sites in either direction are displayed. b Bars represent the number of genes with either 1, 2, 3–5, or more
than 5 target CpGs. The percentage of genes that are annotated as transcription factors increases with the
number of target CpGs
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14 consistently increased DNA methylation at the target CpGs, respectively). TFs af-

fecting the most CpGs included NFKB1, a key immune regulator (142 target CpGs; 127

regions, that is multiple CpGs spaced less than 1 kb); ZBTB38, a methyl-binding TF (49

target CpGs; 34 regions); and ZNF202, a zinc finger protein involved in lipid metabol-

ism (37 target CpGs; 19 regions). One hundred out of the 127 (79%) TFs belonged to

the C2H2 zinc finger family (odds ratio = 3.07, P = 5.2 × 10−7), of which the majority

(N = 70) contained a KRAB domain. In line with the enrichment for TFs and zinc fin-

gers, the gene set was overrepresented in the GO terms Nucleic Acid binding (N = 99,

P = 1.1 × 10−14), DNA Binding (N = 114, P = 4.7 × 10−9), Metal Ion binding (N = 146,

P = 1.4 × 10−8), and transcription factor activity (N = 73, P = 4.4 × 10−8) (Add-

itional file 11: Table S11).

To assess whether TFs may affect DNA methylation directly (i.e., at their binding

sites), we leveraged existing ChIP-seq data [28]. For each TF, we determined the over-

lap between the target CpGs (at a gene-level significant threshold: P < 1.2 × 10−7) and

its experimentally determined binding sites as compared to a GC-content matched

background. ChIP-seq data was available for 59 out of 110 TFs affecting multiple CpGs

(at P < 1.2 × 10−7). For one third of these TFs (N = 20), target CpGs were significantly

enriched for co-localization with their respective TF binding sites (FDR < 0.05; Fig. 3b,

Additional file 12: Table S12).

Core epigenetic factors

Next, we compared our findings with a manually curated database of core epigenetic

factors (EpiFactors) [6]. This database is mainly focused on the core enzymes that dir-

ectly write, maintain, and/or establish epigenetic marks, but it also includes a few “bor-

derline cases”, such as TFs that interact with epigenetic proteins. We found that 36 of

the identified genes overlapped with genes in this database (odds ratio = 1.02, P > 0.05),

of which 12 affected more than 1 CpG, which did not constitute a significant enrich-

ment compared to the other genes affecting multiple CpGs (odds ratio = 0.82, P > 0.05).

Fig. 3 a Enrichment (odds ratio) for transcription factors among identified genes with either 1, 2, 3–5, or
more than 5 target CpGs. Error bars represent 95% confidence intervals. b Transcription factor binding site
enrichment; each dot represents a transcription factor, with on the x-axis the logarithm of the number of
target CpGs for that transcription factor (at a gene-level significance level; P < 1.2 × 10−7), and on the y-axis
the odds ratio for the enrichment of the target CpGs in its experimentally determined binding sites (ChIP-
seq). The size of the dots represents the significance (FDR), and TFs for which the target CpGs were
significantly enriched in its binding sites are colored in blue
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Interestingly, the majority of the 36 genes encode proteins that target histone proteins

(27 out of 36, OR = 1.13, P > 0.05). Another 7 genes were also annotated as TFs in the

manually curated TF catalog [27]. The core epigenetic factors associated with most tar-

get CpGs include transcription factor IKZF1 (positively associated with methylation at

17 target CpGs), histone demethylase KDM5B (positively associated with methylation

at 7 target CpGs), and BRD3, which recognizes acetylated lysine residues on histones

(positively associated with methylation at 5 target CpGs). The significant core epigen-

etic factors also included the DNA methyltransferase DNMT3A, which was associated

with increased methylation at five target CpGs. Further exploration of potential

DNMT3A targets indicated that the test statistics of DNMT3A were skewed towards in-

creased DNA methylation levels, compatible with widespread but small effects (Add-

itional file 4: Fig. S4). Of note, of the other main DNA methylation modifiers (DNMT1,

DNMT3B, TET1,2,3), we had a sufficiently predictive GI for DNMT1 only. However,

both in the corrected and the uncorrected (for neighboring GIs) analyses, we did not

find significant associations for this gene (Additional file 4: Fig. S4), although the statis-

tical power of the uncorrected analysis was very similar to that of DNMT3A (Additional

file 1: Table S1).

Other mechanisms underlying regulation of DNA methylation

Finally, the majority of the identified genes (N = 662) did not belong to the two a priori

categories (TFs and core epigenetic factors; Fig. 2). A small fraction of these genes en-

codes proteins with DNA-binding properties (N = 24, OR = 0.91, P > 0.05). BEND3, for

example, is a DNA-binding protein that was associated with increased methylation at

15 CpG sites. A previous study showed that BEND3 represses transcription by attract-

ing the MBD3/NuRD complex that initiates histone deacetylation [29].

GO term enrichment analysis did not reveal significant functions underlying these

genes. To explore possible biological functions among these genes, we provide case

studies below for the five genes from this set that were associated with the most target

CpGs: SENP7 (189 target CpGs), CDCA7 (79 target CpGs), NFKBIE (76 target CpGs),

CDCA7L (47 target CpGs), and NLRC5 (43 target CpGs).

NFKBIE

The NFKBIE gene encodes IκBε which is an inhibitor of NFκB, a transcription factor

that plays a fundamental role in the regulation of the immune response [30, 31]. IκBε

binds to components of NFκB and retains it in the cytoplasm, thereby preventing it

from activating genes in the nucleus. Consistent with the previous interpretation of a

trans-methylation QTL effect [16], increased expression of NFKB1 was associated with

genome-wide loss of DNA methylation. In contrast, increased expression of NFKBIE

resulted in higher methylation levels at 76 CpG sites across the genome (70 regions). In

line with its role as NFκB inhibitor, a substantial number of its target CpGs (28) overlap

with NFκB’s target CpGs and show opposite effects (Fig. 4a). To further characterize

the target CpGs, we overlapped the CpGs with trait-associated probes included in

EWASdb [32] (results for all genes are included in Additional file 13: Table S13). The

target CpGs were enriched for CpGs associated with obesity/BMI, consistent with the

role of NFκB in obesity-related inflammation [33].
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NLRC5

Increased expression of NLRC5 was associated with decreased methylation levels at 43

CpG sites (11 regions), which were all located in either the classical or the extended

MHC region [34]. NLRC5 is a known activator of MHC class I genes [35], and in line

with this, the methylation levels of most target CpGs (N = 36) were negatively associ-

ated with the expression levels of one or more neighboring MHC genes (Fig. 4b/Add-

itional file 14: Table S14, Additional file 15: Table S15). Furthermore, the GI

corresponding to NLRC5 was positively associated with the expression of 16 of these

genes. NLRC5 itself does not contain a DNA-binding domain; instead, it has been

shown to affect transcription by cooperating with a multi-protein complex that is as-

sembled on the MHC class I promoter [35]. Interestingly, NLRC5 acts as a platform for

enzymes that open chromatin by histone acetylation and/or demethylation of histone

H3, indicating that decreased DNA methylation may be a consequence of altered chro-

matin state. In line with the role of NLRC5 in immune response, the target CpGs of

NLRC5 were enriched for CpGs that were previously associated with immune-related

disorders (including auto-immune disorders primary Sjögren’s syndrome and mixed

connective tissue disease and sTNFR2 levels; Additional file 13: Table S13) [32].

SENP7

The gene with the largest number of detected target CpGs was SENP7. It was associ-

ated with decreased methylation levels at 189 target CpGs (87 regions) and with in-

creased methylation levels at 19 target CpGs (12 regions). The majority (86%) of the

target CpGs were located on the q-arm of chromosome 19. For most of these CpGs

(92%), the DNA methylation levels were associated with the expression levels of one or

Fig. 4 a Network for transcription factor NFKB1 and its inhibitor NFKBIE. Gray circles indicate target CpGs,
and arrows represent directed associations (i.e., association between GI and DNA methylation levels). Blue
lines indicate a positive association between gene expression and DNA methylation levels; red lines
indicate a negative association between gene expression levels and DNA methylation levels. b NLRC5
(chromosome 16) was associated with decreased DNA methylation levels at multiple (N = 43) CpG sites in
the classical and extended MHC region (chromosome 6). Red lines indicate a negative association between
NLRC5 expression levels and DNA methylation levels. The numbers displayed in the lines indicate how
many target CpGs the line represents. Gene labels are displayed if one or more target CpGs were
associated with the expression of these genes. Blue gene symbols refer to genes negatively correlated with
target CpG methylation (implying upregulation by NLRC5), and vice versa for red labels. Asterisks indicate
that the GI corresponding to NLRC5 was also (positively) associated with this gene
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more nearby zinc fingers (Additional file 16: Table S16, Additional file 17: Table S17),

consistent with a previous gene network analysis [13]. Although SENP7 has no DNA-

binding properties, previous research has shown that it exerts its effect through deSU-

MOylation of the chromatin repressor KAP1 [36]. KAP1 can act as a scaffold for vari-

ous heterochromatin-inducing factors, and there is emerging evidence that KAP1 is

directly involved in regulating DNA methylation [37, 38]. SENP7 could therefore affect

DNA methylation through its interaction with KAP1. We further characterized SENP7

target CpGs by overlapping the CpGs with trait-related probes and found an enrich-

ment for Werner syndrome-associated CpGs [32]. Interestingly, the Werner syndrome

gene product is modified by SUMO [39, 40] and may therefore be related to SENP7’s

function as SUMO protease.

CDCA7

Mutations in CDCA7 have been shown to cause ICF syndrome, a rare primary im-

munodeficiency characterized by epigenetic abnormalities [41]. Previous research

showed that CDCA7-mutated ICF patients show decreased DNA methylation levels at

pericentromeric repeats and heterochromatin regions, and similarly, CDCA7 depletion

in mouse embryonic fibroblasts leads to decreased DNA methylation at centromeric re-

peats [41, 42]. In line with this prior work, increased expression of CDCA7 was associ-

ated with increased methylation levels at 79 CpG sites (79 regions) that were

distributed across chromosomes (Fig. 5a) and were enriched in low-activity regions

(e.g., quiescent states; Fig. 5b) [43]. In addition, the target CpGs were enriched in repeat

sequences as defined by the UCSC RepeatMasker (odds ratio 2.13, P = 0.006) [44]. A

volcano plot showed that the test statistics of CDCA7 were highly skewed towards posi-

tive effects, suggesting that CDCA7 has widespread effects on DNA methylation (Add-

itional file 4: Fig. S5a).

CDCA7L

CDCA7L is a paralog of CDCA7, and similarly, its increased expression was associ-

ated with a genome-wide increase of DNA methylation levels (47 CpG sites, 47 re-

gions; Fig. 5a and Additional file 4: Fig. S5b). CDCA7L’s target CpGs did not

overlap with those of CDCA7; however, they did show a similar genomic distribu-

tion and were enriched in inactive regions (Fig. 5c), although enrichment at repeat

regions as defined in the UCSC RepeatMasker was reduced (OR = 1.59, P > 0.05).

Interestingly, previous research has shown that the risk allele of the genetic variant

most highly associated with multiple myeloma (rs4487645) was associated with in-

creased CDCA7L expression [45]. Our GI for CDCA7L consisted of 5 SNPs, of

which one (rs17361667) was in strong LD (r2 = 0.7) with the risk variant

rs4487645. If the risk variant indeed exerts its pathogenic effect through an effect

on CDCA7L expression, CDCA7L’s effects on DNA methylation might be involved

in the pathogenesis of multiple myeloma. Moreover, our multi-SNP GI was a

stronger predictor of CDCA7L expression (F = 171) as compared with rs4487645

(F = 60) and may therefore be useful in gaining more insight into the role of

CDCA7L in multiple myeloma.
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Discussion
Our genome-wide analysis, utilizing genetic instruments for gene expression, identified

818 genes that affect distant DNA methylation levels in blood and provide insights into

the principles of epigenetic regulation. Our results highlight a role of TFs. TFs were

overrepresented among the identified genes and either consistently increased or de-

creased DNA methylation at their target CpGs. For multiple TFs, we could show that

the associated target CpGs also preferentially co-localized with experimentally deter-

mined binding sites (examples include NFKB1, ZNF544, KLF5, ZNF266, and IKZF1). In

line with these findings, previous studies suggest that TFs can regulate the acquisition

and loss of DNA methylation at their binding sites [8, 9, 46]. For example, several TFs

have been shown to recruit DNMTs to their binding sites, thereby causing de novo

DNA methylation [47–50]. Conversely, TFs have been indicated to protect against the

acquisition of DNA methylation by blocking de novo methylation or by interacting with

TET proteins [10, 11, 16, 50]. We identified TFs with a previously unrecognized role in

the regulation of DNA methylation (e.g., ZNF202, ZNF131 and ZFP90) and provided

support for the presumed role of TFs as previously implicated by post hoc interpret-

ation of results from meQTL mapping (NFKB1 and ZBTB38) [16]. Interestingly, many

of the TFs we identified were members of the C2H2 zinc finger family, which is in line

with previous trans-meQTL findings [24, 25]. The majority of the identified zinc finger

TFs contained a Krüppel-associated box (KRAB) domain, which has been implicated in

epigenetic silencing through the recruitment of KAP1 to its binding sites. KAP1 subse-

quently recruits proteins that establish heterochromatin such as the NuRD complex

and possibly DNMTs, thereby causing de novo methylation [51–53]. Although we

Fig. 5 a CDCA7 (located on chromosome 2) and CDCA7L (located on chromosome 7) both affect genome-
wide DNA methylation levels. Blue lines indicate a positive association between CDCA7 expression and trans
DNA methylation levels. Green lines indicate a positive association between CDCA7L expression levels and
trans DNA methylation levels. b, c Over- or underrepresentation of target CpGs in predicted chromatin
states for b CDCA7 and c CDCA7L. Blue bars represent enrichment of CpGs that are significant at a genome-
wide significance level (P < 1.4 × 10−11), and gray bars represent enrichment of CpGs that are significant at a
gene-level significance level (P < 1.2 × 10−7). BivFlnk, flanking bivalent TSS/enhancer; Enh, enhancer; EnhBiv,
bivalent enhancer; EnhG, genic enhancer; Het, heterochromatin; Quies, quiescent; ReprPC, repressed
polycomb; ReprPCWk, weak repressed polycomb; TssA, active TSS; TssAFlnk, flanking active TSS; TssBiv,
bivalent/poised TSS; Tx, strong transcription; TxFlnk, weak transcription; ZNF/Rpts, ZNF genes and repeats
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found 8 KRAB-ZFs with at least 10 target CpGs that were significantly skewed towards

increased methylation, four were associated with decreased methylation. A possible ex-

planation is that not all KRAB-ZFs act via KAP1. For example, the KRAB-ZF ZNF202,

which was negatively associated with 37 target CpGs, contains a SCAN domain that

prevents the binding of KAP1 [54]. Overall, our systematic genome-wide analysis iden-

tifies novel epigenetic regulatory functions for TFs, significantly expands upon TFs that

were previously implicated in DNA methylation regulation, and identifies the direction

of the effect on DNA methylation.

Exploration of the genes that do not encode TFs revealed several potential mecha-

nisms through which genes may affect DNA methylation. First, several of the genes en-

code proteins with DNA-binding properties, which might recruit or block the DNA

methylation machinery in a similar way to TFs. BEND3, for example, encodes a DNA-

binding protein that attracts the chromatin remodeling NuRD complex to its binding

sites [29]. Second, exploration of the top five non-DNA-binding genes with the highest

number of associated target CpGs suggests that protein-protein interactions are among

the possible mechanisms. The mechanisms include post-translational regulation

(NFKBIE encodes for IκBε which retains NF-κB in the cytoplasm [30]), post-

translational modification (SENP7: deSUMOylates the repressor KAP1 [13]), and re-

cruitment of epigenetic proteins to specific target sites through association with a

DNA-binding protein (NLRC5 associates with a protein complex in MHC-I region

[35]). Third, a subset of the identified genes overlapped with genes in a database that

focuses on the core epigenetic regulators (i.e., the main enzymes that write or erase epi-

genetic marks, such as DNMTs and histone acetyltransferases) [6]. Among these

was DNMT3A, for which we identified five target CpGs. Finally, we note that the

majority of genes that were previously identified as core epigenetic factors (EpiFac-

tor database) are histone modifiers [6]. This suggests that changes in DNA methy-

lation may be secondary to altered chromatin conformation. This idea is further

supported by discussed examples such as IKZF1, BEND3, and NLRC5, which are

thought to attract histone-modifying complexes to their binding sites [29, 35, 55].

Thus, our findings underpin earlier observations that DNA methylation and histone

modifications are interdependent [56].

Conceptually, our method has similarities with previous applications that used gen-

etic variation to infer associations between gene expression and phenotypic outcomes

[14, 15]. To the best of our knowledge, these methods have not been used to investigate

directed associations between gene expression and DNA methylation. A key feature of

our implementation is that it explicitly controls for LD/pleiotropy among neighboring

genes and hence yields directed associations that are specific for a single gene [13]. In-

deed, we observed that, if LD/pleiotropy is not considered, 60% of genes seemingly as-

sociated with DNA methylation in fact involved unspecific effects.

Our method is designed to identify genes with a directed and specific association with

DNA methylation. This results in critical differences in interpretation of results as com-

pared with trans-methylation QTL studies. Trans-methylation QTL studies report on

genetic variants associated with distant DNA methylation. Since genetic variants are

often not readily interpretable, a mix of post hoc analyses, including evaluation of near-

est genes and cis-expression QTL mapping, are commonly performed to link genetic

variants to genes [16, 23–25]. However, these analyses do not control for LD/
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pleiotropy, and as we showed here, this severely limits the possibility of correctly impli-

cating the specific gene involved.

An additional advantage of focusing on genes as functionally interpretable units in-

stead of genetic variants is that this increases power by reducing multiple testing (10

thousands genes vs. millions of genetic variants). Power of our gene-focused approach

is further increased by using multi-SNP instruments which are usually better predictors

of gene expression than single SNPs [13, 14].

We should, however, also note limitations of our method. First, our method does not

distinguish between mechanistically direct or indirect effects of gene expression on

DNA methylation. An example in this regard is NFKBIE, which affects DNA methyla-

tion through inhibition of the transcription factor NFκB. Similarly, TFs could affect

DNA methylation indirectly through the regulation of another gene. We note, however,

that CpGs affected by TFs commonly co-localized with their respective binding sites,

favoring the interpretation of a direct effect. Second, the main assumption in our ana-

lysis is that the genetic instruments affect DNA methylation through their effect on

gene expression. Although we systematically considered LD/pleiotropy among neigh-

boring genes, the genetic instruments may have pleiotropic effects on unmeasured

genes. In addition, although trained to capture variation in gene expression, genetic in-

struments may inadvertently be associated with trans-DNA methylation through other

mechanisms than expression such as interchromosomal contacts [16]. In principal, fur-

ther studies could investigate such pleiotropic effects using statistical methods includ-

ing Egger’s regression and heterogeneity tests [57]. These methods, however, rely on

multiple independent variants which are scarce for gene expression, since most predict-

ive variants are located near the gene and are therefore often not independent because

of LD. Third, although we intended to provide a genome-wide resource of genes that

affect DNA methylation, we had to limit our scope to genes that had a sufficiently pre-

dictive genetic instrument. Fourth, the statistical power of our method is limited be-

cause genetic instruments generally explain a relatively small proportion of the

variation in expression of their corresponding gene (Additional file 1: Table S1; Add-

itional file 4: Fig. S2). We further note that for significant genes, limited power will

often underestimate the true number of CpG sites affected by the respective gene. An

additional factor reducing power is the correction for nearby GIs, which is required to

obtain specific associations but at the same time leads to the loss of true effects. Hence,

we expect that the genes affecting distant DNA methylation we report on here can be

significantly expanded on by applying our method to datasets obtained using more

comprehensive DNA methylation profiling assays than the 450k array, to larger sample

numbers (see power analyses in Additional file 4: Fig. S6), and, in particular, to other

tissues than blood.

We envision multiple applications of our findings. First, we identified many genes

that were previously unknown to be involved in the regulation of DNA methylation.

Importantly, the genes were enriched for transcription factors that, in turn, commonly

affected DNA methylation at their binding sites, thereby providing new targets for stud-

ies into epigenomic regulation. Second, epigenetic dysregulation is a hallmark of many

diseases, and in line with this, mutations in genes regulating the epigenome are increas-

ingly reported to be involved in Mendelian disease [1]. We found that 200 out of the

818 genes we implicated in the regulation of DNA methylation were known disease
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genes (OMIM; Additional file 18: Table S18) [58]. Our results may aid in elucidat-

ing downstream effects of these disease genes. An interesting example in this re-

gard is CDCA7L, which we found to affect DNA methylation throughout the

genome in a similar fashion as CDCA7. Mutations in CDCA7 lead to the ICF syn-

drome, a syndrome characterized by hypomethylation in pericentric repeats [41].

Since we found that CDCA7L has similar effects on DNA methylation, it may be

hypothesized that mutations in CDAC7L lead to similar phenotypes. Finally, altered

DNA methylation patterns have been reported for many environmental exposures

and traits using epigenome-wide association studies (EWAS). However, it often re-

mains unclear how these patterns are established [46]. The target CpGs identified

in our analyses can aid in interpreting EWAS results and may point to the signal

transduction pathways relaying external and internal stimuli to the methylome. To

illustrate this point, we overlapped the identified target CpGs with existing EWAS

results (Additional file 13: Table S13) and found that target CpGs of several genes

were enriched for trait-associated CpGs, including Werner syndrome (SENP7, a

SUMO peptidase; SUMO modifies the Werner syndrome gene product [39, 40]),

auto-immune diseases and inflammatory markers (NLRC5, a key regulator of MHC

class I-dependent immune response [35]), and obesity/BMI (NFKBIE and NFKB1;

NFκB is a central regulator of inflammatory response, including metabolism-related

inflammation [33]).

Conclusions
We present a collection of genes for which we provide strong evidence that they affect

DNA methylation levels in blood. Our results add to the increasing evidence that tran-

scription factors are involved in shaping the methylome, and we demonstrate that our

results can provide insight into the various mechanisms through which DNA methyla-

tion is regulated (e.g., post-translation modification and secondary effects of chromatin

conformation). We believe these results can guide follow-up studies into epigenetic

regulation, the role of these regulatory genes in disease, and the pathways mediating

differential methylation as detected in EWASs.

Methods
Cohorts

The Biobank-based Integrative Omics Study (BIOS) Consortium comprises six Dutch

biobanks: Cohort on Diabetes and Atherosclerosis Maastricht (CODAM) [59],

LifeLines-DEEP (LLD) [60], Leiden Longevity Study (LLS) [61], Netherlands Twin

Registry (NTR) [62, 63], Rotterdam Study (RS) [64], and Prospective ALS Study

Netherlands (PAN) [65]. Data used in this study consists of 4162 unrelated individuals

for which genotype data was available. For 4056 of these individuals, DNA methylation

data was available, and for 3357 individuals, RNA-sequencing data was available. Geno-

type data, DNA methylation data, and gene expression data were measured in whole

blood. In addition, sex, age, and cell counts were obtained. The Human Genotyping fa-

cility (HuGe-F, Erasmus MC, Rotterdam, The Netherlands, http://www.glimdna.org)

generated the methylation and RNA-sequencing data.
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Genotype data

Genotype data was generated for each cohort individually. Details on the methods used

can be found in the individual papers—CODAM: [66], LLD: [60], LLS: [67], NTR: [68],

RS: [64], and PAN: [65]. The genotype data were harmonized towards the Genome of

the Netherlands (GoNL) using Genotype Harmonizer [69] and subsequently imputed

per cohort using MaCH [70] with the Haplotype Reference Consortium panel [71]. Per

cohort, SNPs with R2 < 0.3 and call rate < 0.95 were removed, and VCFtools [72] was

used to remove SNPs with Hardy-Weinberg equilibrium P value < 10−4. After merging

the cohorts, SNPs with minor allele frequency < 0.01 were removed. These imputation

and filtering steps resulted in 7,568,624 SNPs that passed quality control in each of the

datasets.

Gene expression data

A detailed description regarding generation and processing of the gene expression data

can be found elsewhere [17]. Briefly, total RNA from whole blood was deprived of glo-

bin using Ambion’s GLOBIN clear kit and subsequently processed for sequencing using

Illumina’s Truseq version 2 library preparation kit. Paired-end sequencing of 2 × 50 bp

was performed using Illumina’s Hiseq2000, pooling 10 samples per lane. Finally, read

sets per sample were generated using CASAVA, retaining only reads passing Illumina’s

Chastity Filter for further processing. Data were generated by the Human Genotyping

facility (HuGe-F) of Erasmus MC (The Netherlands). Initial QC was performed using

FastQC (v0.10.1), removal of adaptors was performed using cutadapt (v1.1) [73], and

Sickle (v1.2) [74] was used to trim low-quality ends of the reads (minimum length 25,

minimum quality 20). The sequencing reads were mapped to human genome (HG19)

using STAR (v2.3.0e) [75].

To avoid reference mapping bias, all GoNL SNPs (http://www.nlgenome.nl/?page_id=

9) with MAF > 0.01 in the reference genome were masked with N. Read pairs with at

most 8 mismatches, mapping to as most 5 positions, were used.

Gene expression quantification was determined using base counts [17]. The gene def-

initions used for quantification were based on Ensembl version 71, with the extension

that regions with overlapping exons were treated as separate genes and reads mapping

within these overlapping parts did not count towards expression of the normal genes.

For data analysis, we used the log counts per million (CPM). We restricted the ana-

lysis to protein-coding genes and lincRNAs (long intergenic non-coding RNAs) that

were at least moderately expressed (median CPM ≥ 1). This resulted in 11,475 protein-

coding genes and 355 lincRNAs that were used for further analysis. To reduce the in-

fluence of possible outliers, we transformed the data using rank-based inverse normal

transformation within each cohort [76–78].

DNA methylation data

The Zymo EZ DNA methylation kit (Zymo Research, Irvine, CA, USA) was used to

bisulfite-convert 500 ng of genomic DNA, and 4 μl of bisulfite-converted DNA was

measured on the Illumina HumanMethylation450 array using the manufacturer’s proto-

col (Illumina, San Diego, CA, USA). Preprocessing and normalization of the data were

done as described in the DNAmArray workflow (https://molepi.github.io/DNAmArray_
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workflow/). In brief, IDAT files were read using the minfi [79], while sample-level qual-

ity control (QC) was performed using MethylAid [80]. Filtering of individual measure-

ments was based on detection P value (P < 0.01), number of beads available (≤ 2), or

zero values for signal intensity. Normalization was done using functional normalization

[81] as implemented in minfi [79], using five principal components extracted using the

control probes for normalization. All samples or probes with more than 5% of their

values missing were removed.

Probe filtering

Since it has been shown that the Dutch population contains population-specific vari-

ation, we identified genetic variants that overlap with probes using release 5 variant

data from the GoNL project (https://molgenis26.target.rug.nl/downloads/gonl_public/

variants/release5/) [82]. This data contains 20.4 million SNVs and 1.1 million short

INDELs (1–20 bp) obtained from WGS data from 498 unrelated Dutch individuals.

BCFtools was used to extract the INFO files from the GoNL VCF files [83]. The gen-

omic coordinates were stored in GRanges format in R [84]; for deletions, we used the

length of the deletion to define the start and end coordinates of the deletion. The fin-

dOverlaps function in the GenomicRanges package was used to identify variants that

were located in the SBE site for type I probes (the SBE site coincides with the C-

nucleotide in type II probes), CpG site, or within 5 bases of the 3′-end of the probe.

Since not all SNPs at SBE sites of type I probes cause a color-channel switch, only

SNPs that cause a color-channel switch (A/G, G/T, and C/G SNPs for reverse strand

probes and C/T, C/A, and C/G SNPs for forward strand probes) and INDELs overlap-

ping the SBE were flagged for removal. A list of all SNPs and short INDELs that over-

lap with 450K probes is available from https://github.com/molepi/DNAmArray.

We identified 15,724 probes that contained one or more variants with MAF > 0.01 in

the SBE site (causing a color-channel switch), CpG site, or within 5 bases of the 3′-end

and excluded these probes for further analyses. In addition, we removed probes with a

non-unique mapping and non-unique 3′ nested subsequences of at least 30 bases as

recommended by Zhou et al. [85]. In total, this led to the removal of 41,674 probes. Fi-

nally, we removed all probes on the sex chromosomes.

The final dataset consisted of 4056 samples and 428,126 probes. To reduce the influ-

ence of possible outliers, we transformed the data using rank-based inverse normal

transformation within each cohort, similar to the RNAseq data.

Proper data linkage of SNP, RNAseq, and DNA methylation array data within indi-

viduals was verified using the omicsPrint package [86].

Imputation of missing covariates

A fraction of the samples had missing data for the phenotype measures used in subse-

quent analyses (white blood cell proportions, age, and sex).

Overview missing data

White blood cell counts (neutrophils, eosinophils, lymphocytes, monocytes, and baso-

phils) were measured as part of the complete blood cell count. Complete cell count

measurements were missing for 35% of the RNAseq samples and 44% of the DNA
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methylation samples. Reported age and sex were missing for 1.5% of the RNAseq sam-

ples and 18% of the DNA methylation samples.

Imputation

Since DNA methylation and RNAseq data are informative for age, sex, and white blood

cell composition [87–90], we used the data to impute these variables. Missing observa-

tions were imputed separately for the RNAseq and DNA methylation data because

there is incomplete overlap between the datasets. Missing observations in the measured

white blood cell counts (WBCC) were imputed using the R package pls, adjusting for

reported age and sex, as described earlier (https://molepi.github.io/DNAmArray_work-

flow/05_Predict.html) [20]. For missing age and sex measurements, we compared the

performance of the elastic net, LASSO, ridge, and pls methods. To evaluate the per-

formance of these models, the data was randomly split into a train set (2/3) and a test

set (1/3). This procedure was repeated 25 times, each time calculating the accuracy in

the test set (mean squared error for age and F1-score for sex). The above algorithm was

performed using varying numbers of input variables (50 to 10,000), where the input

variables were selected based on their correlation with the outcome. The model and

number of input variables that resulted in the best average accuracy in the test sets

were selected to impute missing data. The average correlation between predicted and

reported age in the tests sets was 0.98 for the DNA methylation data and 0.92 for the

RNAseq data. Sex was almost perfectly predicted (accuracy ≈ 0.995) in both DNA

methylation and RNAseq data.

Constructing a local genetic instrument for gene expression

We constructed a genetic instrument (GI) for the expression of each gene using nearby

genetic variants. We split the genotype and RNAseq data in a training set (one third of

all samples, N = 1119) and a test set (two thirds of all samples, N = 2238), making sure

all cohorts and both sexes were equally represented within each set. In the train set, we

built a GI for the expression of each gene by employing a two-step approach in which

LASSO regression is used for variable selection and coefficient estimation [18]. We pre-

viously reported that LASSO performs better (BLUP, BSLMM) or similar (elastic net)

compared to other methods to create GIs [13].

The number of variables chosen by LASSO is generally large and potentially includes

noise variables [91]. A two-step approach can overcome this problem, where LASSO is

first used for variable selection and is then used again on the selected variables for coef-

ficient estimation. In detail, for each gene, we performed the following procedure:

1) LASSO is performed in the training set to select nearby genetic variants (within

the gene or within 100 kb of the gene’s transcription start site (TSS) or

transcription end site (TES)) that are predictive of the expression of the respective

gene. Fivefold cross-validation was used to find the penalization parameter λ that

minimizes the mean squared error (MSE).

2) LASSO is performed in the training set on the remaining genetic variants. In order

to select the most parsimonious model without losing accuracy, we used the “one-

standard error rule” to select the largest penalization parameter λ that is within 1
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standard error of the minimum with the constraint that at least one SNP has a

non-zero coefficient [92]. We then calculated the genetic instrument as the sum of

dosages of each SNP multiplied by their effect sizes:

GI j ¼ Dβ j

where GIj is a vector of predicted expression levels for gene j, D is a matrix with dosage

values for the nearby genetic variants of gene j, and βj is a vector of coefficients as de-

termined in the second LASSO step described above.

In both LASSO steps, we included known covariates (age, sex, cohort, and white

blood cell composition) and the first five principal components derived from the RNA-

seq data in the LASSO model, because the inclusion of covariates that explain variation

will generally lead to increased precision of the SNP coefficients [93]. These covariates

were left unpenalized, ensuring that their coefficient is always non-zero.

We evaluated the predictive performance of the genetic instruments in the test set.

We employed analysis of variance (ANOVA) to evaluate the added predictive power of

the GI over the covariates, as reflected by the F-statistic. Genetic instruments with an

F-statistic > 10 were considered valid instruments [19].

Testing for trans effects

Using linear regression, we tested for an association between each GI j and the DNA

methylation levels k at CpGs in trans (> 10Mb):

DNAmk ¼ GI jφ j þ Cβþ ε

where we test for the significance of the regression coefficient φj, and C represents a

covariate matrix including sampling age, sex, cohort, white blood cell composition, and

five principal components. We used the Bioconductor package bacon to correct for in-

flation and/or bias in the test statistics [20] and corrected for multiple testing using the

Bonferroni correction (8644 × 428,126 tests, P < 1.4 × 10−11). A two-step approach was

used to account for LD/pleiotropy within the obtained results (Additional file 4: Fig.

S7). First, we corrected all GI-CpG pairs for nearby GIs (within 1Mb of the gene’s

TSS/TES) using linear regression:

DNAmk ¼ GI jφ j þ Cβþ Gjγ þ ε

where we test for the significance of the regression coefficient φj; C represents a covari-

ate matrix including sampling age, sex, cohort, white blood cell composition, and five

principal components; and Gj represents a matrix with GIs of genes neighboring (< 1

Mb) index gene j. Genes for which the corresponding GI was highly correlated with

one or more neighboring GIs (r > 0.95) were excluded from further analyses. To pre-

vent collinearity, we pruned the neighboring GIs that were included in the model using

the findCorrelation function in the caret R package using a correlation cutoff of 0.95

[94]. Second, among the GIs that remained significant, we tested for residual pleio-

tropic effects that were not captured by the correction for nearby GIs. For each GI, we

evaluated the added predictive power over the covariates and neighboring GIs on the

expression corresponding to nearby significant GIs. We excluded GIs that shared target
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CpGs with a neighboring significant GI (at a gene-level Bonferroni level, P < 1.2 × 10−7)

and were at least weakly predictive of the expression of that gene (F > 5).

Power analyses

We calculated statistical power to detect associations at a two-sided α of 1.4 × 10−11

based on the proportion of variance in gene expression explained by the genetic instru-

ments, the sample size, and varying hypothetical effect sizes [26]. We evaluated the

statistical power for both the uncorrected analysis (not including nearby genetic instru-

ments) and the corrected analysis (including nearby genetic instruments, < 1Mb). For

the corrected analysis, we calculated power using the proportion of variance in gene ex-

pression explained taking into account the neighboring GIs (partial R2).

Enrichment analyses

Gene set enrichment

Gene set enrichment was performed for GO molecular functions using DAVID

[95], where all genes with a predictive GI (F > 10) were used as background.

Fisher’s exact test was used to test for enrichment of transcription factors [27] and

epigenetic factors [6].

Chromatin state enrichment

Chromatin state segments were downloaded from the Epigenomics Roadmap for all

blood subtypes [43]. CpGs were annotated to different segments based on the most fre-

quent occurring feature in the various blood cell subtypes. Repeat sequences were

downloaded from the UCSC table browser [44]. Enrichment tests for chromatin state

segments and repeat sequences were performed using Fisher’s exact test.

Transcription factor binding site enrichment

We obtained transcription factor ChIP-seq peaks called with the MACS2 software from

the GTRD database (http://gtrd.biouml.org/), which contains uniformly processed

ChIP-seq data from ENCODE and the Sequence Read Archive (SRA) [28, 96–98]. For

59 out of the 110 identified transcription factors associated with multiple CpGs (2 or

more), at least 1 ChIP-seq experiment was available. For each TF, we overlapped target

CpG locations (at a gene-level significant threshold, P < 1.2 × 10−7) and its experimen-

tally determined binding sites (ChIP-seq peaks). If multiple experiments were available

for a specific TF, we determined the overlap per experiment. The HOMER soft-

ware was used to generate a background set for each TF with the same GC-

content distribution as the target CpGs (100,000 regions) [99]. We performed Fish-

er’s exact test to determine whether the target CpGs overlapped with ChIP-seq

peaks more often than the background regions. We employed a two-step approach

to account for multiple testing, where first the Simes procedure was used to con-

trol for multiple experiments available per TF (since they are expected to be corre-

lated), and second the Benjamini-Hochberg procedure was used to control the FDR

among the tested TFs [100].
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EWAS enrichments

Blood-related EWASs were downloaded from EWASdb (https://bigd.big.ac.cn/ewas/

downloads) [32]. For each gene, we overlapped target CpGs (at a gene-level significant

threshold, P < 1.2 × 10−7) with CpGs associated with each trait included in the EWAS

database, and performed Fisher’s exact test to determine whether the target CpGs over-

lapped more often with trait-related CpGs than a background consisting of all probes

included in the database. We limited the analysis to traits associated with < 10,000

CpGs.

Association with trans expression levels

For several examples, we tested whether the target CpGs were associated with nearby

gene expression and/or if the GI corresponding to the index gene was associated with

the expression levels of genes near its target CpGs. We tested for an association be-

tween the target CpGs and the expression of nearby genes (< 250 kb) using linear re-

gression. Age, sex, cohort, white blood cell composition, and 10 principal components

(first five PCs derived from gene expression data, and first five PCs derived from DNA

methylation data) were included as covariates. Similarly, to test whether the index GI

was associated with the expression of genes near the target CpGs, we tested for an as-

sociation between the GI and the expression of nearby genes (< 250 kb) using linear re-

gression. Age, sex, cohort, and white blood cell compositions were included as

covariates. In both analyses, we used bacon to correct for bias and inflation in the test

statistics and adjusted for multiple correction using the Bonferroni correction [20].
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Additional file 14: Table S14. Significant associations between the DNA methylation levels of NLRC5 target CpGs
and the expression of nearby genes (<250Kb).

Additional file 15: Table S15. Significant associations between the GI corresponding to NLRC5 and the
expression of genes near its target CpGs (<250Kb).

Additional file 16: Table S16. Significant associations between the DNA methylation levels of SENP7 target CpGs
and the expression of nearby genes (<250Kb).

Additional file 17: Table S17. Significant associations between the GI corresponding to SENP7 and the
expression of genes near its target CpGs (<250Kb).

Additional file 18: Table S18. OMIM phenotypes linked to the identified genes.

Additional file 19. Review history.
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