2 research outputs found
Axial Magnetic Field Effect on Taylor-Couette Flow
This study is interested in the effect of an axial magnetic field imposed on incompressible flow of electrically conductive fluid between two horizontal coaxial cylinders. The imposed magnetic field is assumed uniform and constant. The effect of heat generation due to viscous dissipation is also taken into account. The inner and outer cylinders are maintained at different uniform temperatures. The movement of the fluid is due to rotation of the cylinder with a constant speed. An exact solution of the equations governing the flow was obtained in the form of Bessel functions. A finite difference implicit scheme was used in the numerical solution. The velocity and temperature distributions were obtained with and without the magnetic field. The results show that for different values of the Hartmann number, the velocity between the two cylinders decreases as the Hartmann number increases. Also, it is found that by increasing the Hartmann number, the average Nusselt number decreases. On the other hand, the Hartmann number does not affect the temperature
Women's Experiences of Breastfeeding in a Bottle-Feeding Culture
We consider an ascending laminar air flow in a vertical channel formed by two parallel flat plates wetted by a thin water film and under different temperature and concentration conditions. The study includes a numerical finite volume method for the treatment of the double diffusion problem, where the analytical solution is given to the thermal diffusion. The analytical study showed that the reversed flow is observed only under some wall temperature conditions and also for certain values of Re/Gr. The reversed flow is also strongly dependent on the aspect ratio A, which is based on the cross section of the channel. Indeed, the results show than this dependence is very strong for values less than a certain critical one equal to 2.22. In the absence of the mass transfer the results showed that the evaporation rate remains null along the channel, decreases when the mass gradient is favorable and it finally vanishes at x=15. However, the evaporation rate increases in the case of an unfavorable mass gradient, to cancel at position x=20, then merges with the curve representing the forced convection. In the absence of heat transfer the evaporation rate is less important and amounts to fifty percent of the double diffusion. The results obtained by the analytical and numerical methods are compared each other and with those of a similar works and a good agreement was found