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Analytical and Numerical Study of the Evaporation on Mixed
Convection in aVertical Rectangular Cavity

M. Ihdene1, T. Ben Malek2, S. Aberkane3, M. Mouderes4, P. Spiterri5 and A. Ghezal2

Abstract: We consider an ascending laminar air flow in a vertical channel formed by 
two parallel flat plates wetted by a thin water film and under different temperature and 
concentration conditions. The study includes a numerical finite volume method for the 
treatment of the double diffusion problem, where the analytical solution is given to the 
thermal diffusion. The analytical study showed that the reversed flow is observed only 
under some wall temperature conditions and also for certain values of Re/Gr. The 
reversed flow is also strongly dependent on the aspect ratio A, which is based on the 
cross section of the channel.

Indeed, the results show than this dependence is very strong for values less than a certain 
critical one equal to 2.22. In the absence of the mass transfer the results showed that the 
evaporation rate remains null along the channel, decreases when the mass gradient is 
favorable and it finally vanishes at x=15. However, the evaporation rate increases in the 
case of an unfavorable mass gradient, to cancel at position x=20, then merges with the 
curve representing the forced convection. In the absence of heat transfer the evaporation 
rate is less important and amounts to fifty percent of the double diffusion. The results 
obtained by the analytical and numerical methods are compared each other and with 
those of a similar works and a good agreement was found.

Keywords: Heat and mass transfer, mixed convection, numerical and analytical study, 
channel flow.

1 Introduction

The double diffusion effects on the dynamic and thermal behavior of a real fluid flow 
has been widely studied as in the work of Cheng Chin-Hsiang and Weng Chun-Jen 
(1991). They also treated the effect of the geometry on the reversed flow in a vertical 
differentially heated channel. Their results showed that the presence of the reversed flow 
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depends on the geometry and on the ratio Re/Gr. Podvin and Le Quéré (2013) studied 
numerically a confined flow between two vertical plates which are differentially heated 
in the presence of a positive stratification with periodic wall temperature conditions. The
results showed that instabilities appear for certain values of Ra. This bibliographic work 
reveals two main axes, one of them is restricted to the effect of the temperature gradient. 
Belhadj M, Orfi, Debissi et al. (2007) investigated numerically the problem of condensation 
by mixed convection in a vertical channel. The channel plates are subject to uniform heat 
fluxes. The results showed that the increasing vapor concentration induces an increase in 
the condensing rate, and consequently the bulk temperature of the humid air becomes 
larger. Laminar mixed convection of a binary gas mixture in a parallel-plate channel has 
been analyzed by Kiari Goni Boulama et al. (2012) with a numerical method for the 
steady state case. The channel wall undergoes different combinations of thermal and 
solutal boundary conditions. Analytical solutions have been found for the main flow. 

A criterion based on the Grashof and Reynolds numbers, and the channel inclination for 
the presence of a reversed flow has been observed. As regard to the studied geometrical 
configurations we mention the rectangular or the cylindrical cavities in either horizontal 
or vertical position. Nasr, Debbissi and Ben Nasrallah (2010) carried out numerical 
investigations about the evaporation of a thin binary liquid film by forced convection 
inside a two parallel plate channel. The results show that the temperature inversion is 
obtained during evaporation for the high concentrations of the binary liquid mixture. The 
case of two flat plates constitutes a classical problem since the work of Rayleigh-Bénard. 

Sergent, Podvin, Xin et al. (2011) studied numerically the natural convection instabilities of 
the bi-periodic air blade which is confined between two vertical plates. Two cases are 
considered: In the first case, the temperature on each wall is constant and in the second 
case a constant stratification at the walls is imposed with a linear increase of the 
temperature height. The results are compared with the previous 2D simulation. 2D 
transverse rolls are observed in both cases and they are simply stationary in the 
isothermal case and oscillatory in the stratified one. Cherif, Kassim, Benhamou et al.
(2011) carried out an experimental and numerical study on mixed convection with heat 
and mass transfer in a vertical rectangular duct. Two walls are wetted by a film of water 
and maintained at a constant heat flux while the others are dry and thermally insulated. 
The results showed that evaporation occupies mostly the walls surfaces. The effects of 
buoyancy force on an upward steady state fully developed laminar flow of humid air in a 
vertical parallel-plate channel was studied numerically by Oulaid, Benhamou, Galanis,
(2010). A significant effect of the buoyancy forces has been observed on the hydrodynamic, 
thermal and mass fraction fields. Additionally, these forces induce flow reversal for high 
air temperatures and mass fractions at the channel entrance and reduce heat and mass 
transfer. The conditions for the existence of reversal flow have been determined for 
different aspect ratio and mass diffusion Grashof numbers. Senhaji, Feddaoui, Mediouni
et al. (2009) performed numerical study of evaporation in mixed convection of pure 
ethanol and methanol liquid film. They obtained a system of equations using implicit 
finite difference methods which are solved by the TDMA schema. They examined, also, 
the influence of the entering liquid, the Reynolds number within the gas flow and the 
heat flux at the wall, on the heat and mass transfer intensity. A comparison between the 



obtained results for alcohol and water is studied under the same conditions. The turbulent 
hot air flowing downward a vertical channel is cooled by a laminar liquid film on both 
sides of the channel with thermally insulated walls. The effect of gas-liquid phase 
coupling, variable thermophysical properties and film vaporization are considered. 

Using an elliptical formulation Ait Hammou, Benhamou, Galanis et al. (2003) investigated 
numerically the effects of simultaneous cooling and mass transfer of the laminar humid 
air flow downward a vertical channel with wet walls. They showed that the axial velocity 
profiles, the friction factor, the sensible Nusselt number and the Sherwood number are 
significantly influenced by buoyancy force. The friction factor and Sherwood number 
increases with both inlet air temperature and inlet air humidity. 

The axial evolutions of the interface transverse velocity, the average air temperature, the 
average steam mass fraction, the Nusselt number, the latent heat, the friction coefficient 
and the Sherwood number are analyzed for different inlet air conditions. 

The effects of buoyancy forces on the hydrodynamic behavior are very important; 
however, their influence on the average air temperature and the average mass fraction is 
low. Knowing that the heat is always transferred from the air to the walls, the latter must 
be heated when evaporation is significant. If evaporation is slow or condensation is 
present, walls cool down. Chien-Chang Huang (2005) examined numerically mixed 
convection heat and mass transfer in vertical ducts with film evaporation and 
condensation. The effect of film evaporation and condensation along the wetted wall 
with constant temperature and concentration on the heat and mass transfer in rectangular 
vertical ducts are considered. The results showed that the latent heat transport with film 
evaporation and condensation enhances the heat transfer rate. Better heat transfer 
enhancement related to film evaporation is found for a system with a higher wall 
temperature. Agunaoun, Idrissi, DaÏf et al. (1998) proposed a numerical analysis of the 
heat and mass transfer in a binary thin film flowing down an inclined plane. This 
analysis is based upon the resolution of transfer equations in liquid and vapor phases by 
an implicit finite difference method. These equations are coupled and the mass diffusion 
in the liquid film is taken into account. The most interesting results are obtained in 
forced convection, particularly in the case of ethylene glycol-water mixture. Lefi1 and 
Boukadida (2008) studied mechanisms of heat and mass transfer of evaporation in forced 
convection, without liquid film, in the case of a steady established regime. The in-time 
monitoring, i.e. in unsteady phenomena, of the different processes and magnitude, can 
give better understanding of the mechanisms of coupled heat and mass transfer during 
the evaporation of a liquids in a confined space at the free surface level. This work 
provides a contribution to the understanding of these mechanisms in unsteady forced 
convection during the evaporation of a liquid in a horizontal channel. The flow is 
laminar and two-dimensional. The gas mixture is transparent to thermal radiation. The 
method of finite difference is adopted for the numerical solution of the different 
conservation equations. Their paper depicted the evolution of different spatial physical 
quantities such as temperature, vapor concentration, longitudinal and transversal 
components of the fluid velocity. They also presented the evolution of local heat and 
mass transfer coefficients and the evolution of the Nusselt and Sherwood numbers. Nait 
Alla, Feddaoui, Meftah (2015) presented a contribution to the comprehension of 



diffusion mechanisms in unsteady forced convection during evaporation of certain 
liquids in a horizontal channel. They analyzed the mechanism of mixed convection with 
heat and mass transfer during the evaporation of ethanol liquid film over vertical finite 
channel. A method of implicit finite difference is used to solve the coupled equations of 
the liquid film and gas associated to the corresponding interface conditions. The effect of 
the number of heated zones and their positions on the heat and mass transfer is analyzed. 
Recently, Terzi, S. Ben Jabrallah et al. (2016) realized an experimental study concerning 
the porosity effect on the evaporation. The results showed that the temperatures are 
higher with the presence of the porous medium and also the addition of the porous layer 
improves heat and mass exchange. 

The main objective of this work is to analyze the heat and mass transfer during the 
evaporation of an extremely thin liquid film by mixed convection of humid air in a 
vertical channel with isothermal wet walls. An analytic study was developed in order to 
clarify the conditions under which, in developing flow regions, reversed flow does occur 
for different heating conditions. 

2 Analytical study

This study concerns the analytical analysis of a fully developed upward flow coupled 
with heat transfer in a vertical rectangular conduct of a differentially heated walls as 
shown in the Figure 1. The physical properties of the fluid are considered constant 
except the buoyancy forces where the Boussinesq approximation is used.

Figure 1: Analytical configuration study

Using dimensionless variables are listed below:

 z∗ = zz" ,   y∗ = yz"  , x∗ = xz"Gr  , w∗ = wz"νGr   , θ = (T − T")T& − T"   , N = θ(0)θ(A) , 
p = ('*'+)-+.

/123.
With: p" = ∂p∂x = cst,  Re = w" . y"v ,    A = y"z" , Gr = gβ(T& − T")z"7/v9
The momentum and energy dimensionless equations of developed flow in the mixed 
convection are written in the following form:

z

x

y

w



:.;:-. + :.;:>. = :':? − θ (1)

w :@:? = 1/ Pr C:.@:>. + :.@:-.D (2)

2.1 Temperature equation resolution

Assuming that the temperature is independent of the x direction, the temperature 
equation becomes::.@:-. + :.@:>. = 0 (3)

The solution of the equation (3) is: θ(z, y) = θ"eE(FH-IEFH>) = θ"eEF-eF> = sin(kz + φ-)( Cch(ky) + D sh(ky))  (4)    

Where:   φ-, C, D are determined from the following boundary conditionsM = 0   θ = 0     ,      z =1  θ=0      (5)

y = 0      θ = 1     ,     y =A   θ=N        (6)

As:φ- = 0, k = mπ, C = 1, D = Q*SUFVWU(FV)  (7)

The general solution is expressed as the form:θ(z, y) = ∑ GmYZ[\ θ"eE]FH-IF^>_      (8)

The standard temperature expression is: θ(z, y) = ∑ 9(\*(*\)`)aYZ[\ θ"eE]FH-IF^>_ (9)

Limited to the first term of the harmonic solution, i.e. m = 1, we found the temperature 
final expression which is corresponding to the particular solution:θ = ba WU[a(V*>)]IQWU(a>)WU(aV) ∙ sin(πz) (10)

2.2 Resolution of the momentum equation

The velocity equation is given by::.&:-. + :.&:>. = :':? − θ (11)

The folowing solution is adopted for the equation (11):

w = w\ C:':?D + w9(θ) (12) 

With:   :':? = Cte  et  θ = θ(z, y)
Then, the differential velocity equation can be decomposed into two equations:∇9w\ = :':?  , ∇9w9 = −θ(z, y)      (13)

Then, is calculated with the equation below:      :.&o:-. + :.&o:>. = :':? (14)



The solution of the equation (14) may be given in the flowing form: w\(z, y) =  w\(z) +  :':? . w\qqqq(z, y) (15)

The solution (15) is replaced in the eqt (14)::.&o(-):-. + :':? C:.&oqqqq(-,>):-. + :.&oqqqq(-,>):>. D = :':? (16)

The precedent equation (16) is possible only if:

:.&o(-):-. = :':? and
:.&oqqqq(-,>):-. + :.&oqqqq(-,>):>. = 0          (17)

We found that:w\(z) = :':? C-.
9 + C\z + C9D (18)

The constants C\ and C9  are determined by the application of the boundary conditions:z = 0, w\ = 0 → C9 = 0     and  for   z = 1, w\ = 0 → C\ = − 12 ∂p∂x
So, W1 is:  w\(z) = \9 :':? (z9 − z )            (19)

The calculate of the average velocity    w\qqqq(z, y) is::.&oqqqq(-,>):-. + :.&oqqqq(-,>):>. = 0 (20)

The solution of the eqt (20) is assumed to be:w�\(z, y) = w�\"eE]FH-IF^>_ = (Cch(ky) + Dsh(ky))sin (kz + φ-)  (21)

Appling the precedent boundary conditions, which ones we found that: k = π, φ- = 0
The particular solution is now:w�\(z, y) = WU(FV*F>)IWU(F>)WU(FV) sinkz (22)

The general solution is presented here by:w�\(z, y) = ∑ GmYZ[\ w�\"eE]FH-IF^>_ (23)

Then the velocity expression for the first harmonic is:w�\(z, y) = ba� WU[a(V*>)]IWUa>WU(aV) ∙ sin(πz)      (24)

Similarly the velocity w9 is calculated following the steps below::.&.:-. + :.&.:>. + θ(z, y) = 0      (25)

with  θ = 4� sh[π(A − y)] + Nsh(πy)sh( πA) ∙ sin(πz)
The general solution of the velocity is given in the equation:w9(z, y) = ∑ Gm/2mπYZ[\ [C\ch(mπy) + C9sh (mπy) +  y(C7ch(mπy)   +Cbsh (mπy))]sin (mπz) (26)



In the case of taking into account only the fundamental harmonic, (G\ = ba ) , the 

expression becomes:w9(z, y) = 2/π9[c\ch(πy) + c9sh (πy) +  y(c7ch(πy) + cbsh (πy))]sin (πz) (27)

Applying the boundary conditions of the velocity we find that:w9(z, y) = 9a.WUaV �ych(π(A − y) − A CWU (a>)WU(aV))D� sin (πz) +9Qa.WUaV �−A C(SU(aV)WU(a>)WU(aV) )D + yNch(πy)� sin (πz) (28)

It can be write in the following form:w9(z, y) = w9"(z, y) + 9a.WUaV �−A C(*QSU(aV)WU(a>)WU(aV) )D − yNch(πy)� sin (πz)  (29)

Where:   w9"(z, y) = 9a.WUaV �ych(π(A − y) − A CWU (a>)WU(aV))D� sin (πz)
represents the velocity, when only one of the walls is heated; in this case; the right side is 
in the temperature θ (0) = 1 and the left side is in the ambient temperature θ (A) = 0, as it 

was the case of the study by Cheng Chin-Hsiang and Weng Chun-Jen (1991).

2.3 Expression of the velocity as a function of a grashof number

The expression of (the) velocity contains the pressure gradient (∂p/∂x), we must (then) 

calculate it according to the Gr and Re number. For this we calculate the flow rate of this 
velocity through a transverse section of elementary surface equal to dz.dy as follows:∬ w∗dzdyV>[" = ��>23 = f(:':?)                (30)

It gives:   
:':? = g(��>23 ) (31)

This expression indicates that the pressure gradient of according to x direction is 
constant for a given flow in a given geometry. It depends only on the values of Rey/Gr 
and A. The calculation of the integral is then:∬ w∗dzdy = ba� SU(aV)*\)WU(aV) �\IQa + V( QSU(aV)*\)WU(aV) � − bQVa� − �'�? � V\9 − \�a� SU(aV)*\)WU(aV) � = ��>23 (32)

Where:   − �'�? = C��^�� * �����(��)�o)��(��) �o��� I�( ���(��)�o)��(��) �I����� D
� �o.*o�����(��)�o)��(��) �

So the velocity expression is given by:

w(z, y) = *��^�� I� (��[��]�o)����(��) ���o� I�(���(��)�o)��(��) �*Q�����o.*o���(��(��)�o)��(��) � \9 (z9 − z) +
ba� WU[a(V*>)]IWUa>WU(aV) ∙ sin(πz)� +

9a.WU(aV) � *VWU(aV) sh(πy) + ychπ(A − y)� sin(πz) + 9Qa.WU(aV) �V(SU(aV))WU(aV) sh(πy) −
ych(πy)� sin(πz)            (33)

We note that these last two expressions are identical to those given by Cheng Chin-
Hsiang and Weng Chun-Jen (1991) by replace N = 0.

2.4 Wall friction treatment



The wall friction is given by:

τ& = dwdy �>[V = C � 4π9 chπA − 1sh(πA)   + 2π9sh(πA) � – Aπsh(πA) ch (πA) +  1  + 2Nπ9sh(πA)
�Va(SU(aV))WU(aV) ch (πA) − ch(πA) − Aπsh(πA)� (34)

Where: C = *��^�� I� (��[��]�o)����(��) ���o� I�(���(��)�o)��(��) �*Q�����o.*o���(��(��)�o)��(��)
That can be writing in the following form:

τ& = ¢��>23 − b (SU[aV]*\)a�WU(aV) �\a − VWU(aV) + Qa + V]QSU(aV)_WU(aV) � + N bVa�£ ���.�o���(��)��(��) �
�o.*o���(��(��)�o)��(��) −

9a.WU(aV) �WU(aV)*VaSU(aV)WU(aV) � − 9Qa.WU(aV) �Va*WU(aV)SU(aV)WU(aV) �           (35)

We put:   −¤ = ���.�o���(��)��(��) �
�o.*o���(��(��)�o)��(��) andQ = − b(*¦)(SU(aV)*\)a�WU(aV) �\a − VWU(aV)� − 9a.WU(aV) �1 −

VaSU(aV)WU(aV) �
The final expression of the wall friction in the case 1, becomes:τ§+ = −M ��>23 + Q (36)

This expression shows that the wall friction decreases linearly with Rey/Gr parameter. 

The supplementary term of the wall friction due to the existence of a temperature at the 
right wall is given by an additional term defined by:

τW©' = N ª¢− b (SU[aV]*\)a�WU(aV) �\a + V(SU(aV))WU(aV) � + bVa�£ (−M) − 9a.WU(aV) �Va*WU(aV)SU(aV)WU(aV) �«   (37)

We find:  τW©' = NP, Which then gives the final expression of the wall friction in the
general case:

τ& = −M Rey Gr¬ + Q + NP    (38)

2.5 Reverser  flow

This situation exist for the annulations of the wall friction, ® = ¯, which corresponds to
the critical Re/Gr values given by��>23 S3°±°²©� = −N bVa� + b (SU[aV]*\)a�WU(aV) �QI\a + V(QSU(aV)*\)WU(aV) � − \9 ¢�WU(aV)*VaSU(aV)WU(aV) � +
N �Va*WU(aV)SU(aV)WU(aV) �£ ∗ �o.*o���(��(��)�o)��(��)\ISU(aV)    (39)

3 Problem formulation and numerical study  

3.1 Formulations of physical problem



We consider the following hypothesis; humid air is considered a perfect gas, the viscous 
energy dissipation and The Soret effects and Dufour ( ? ) are negligible, Boussinesq 
approximation is adopted, the liquid gas interface is considered on thermal equilibrium 
and the surface shear is inexistent. In this case the momentum and energy equations can 
be written as follow:

· Continuity equation:  :³:? + :´:> = 0          (40)

· Momentum equation:

u :©:? + v :©:> = − :¶:? + 9�� C:.©:?. + :.©:>.D  + 9��. (G·θ + Gr¦C)    (41)

u :¸:? + v :¸:> = − :¶:¹ + 9�� C:.¸:?. + :.¸:>.D (42)

· Energy equation:

u :@:? + v :@:> = 9��¶3 C:.@:?. + :.@:>.D              (43)

· Species conservation equation:

u :S:? + v :S:> = 9��ºS C:.S:?. + :.S:>.D  (44)   

Boundary Conditions:

At the inlet     y = 0  v = 1  et     u = c = θ = 0               (45)

At the outlety = L :©:> = :¸:> = :@:> = :S:> = 0 (46)

At the walls: x = 0 and x = 0.5   u = ∓u�     C =  ¾ =  1    (47)

The dimensionless transverse velocity at the interface is given by: (Burmeister, 1993) U�== *9��ºS (&À*&ÁÂ)(\*&À) :Ã:?Ä?[" (48)

The mass fraction w& at the wall, corresponding to the saturation conditions at Tw is
calculated by assuming that the air-vapor mixture is an ideal gas mixture. 

3.2 Numerical method

The numerical approach adopted is based on spatial discretization by the finite volume 
method developed by PATANKAR (1980). The velocity-pressure coupling is treated 
with the SIMPLER algorithm. For the calculation of the velocity fields it uses a shifted 
grid in relation to the pressure field. The convergence criterion is based on the residue of 
the continuity equation. It is reached when this residue is less than a predetermined value 
usually taken equal to 10-6.

3.2.1 Grid independence study

We consider a non-uniform grid in both directions with greater node density near the 
inlet and near the walls; where the temperature and concentration gradient are high. In 



order to study the sensibility we considered different grid (90×20, 100×35, 150×50, 
200×70, 300×90, 350×90, and 400×100). The results of this study are obtained by 
comparing the values of the Nusselt number near one of the walls, the maximum of the 
stream function and the transverse velocity. The table 1 shows that the results of this 
study. the both grid 100×35 and 200×70 are chosen in this study, On the other hand, the 
computer code and the mathematical model have been validated by comparison with the 
available results in the literature (Shah and London (1978); Ait Hammou (2004); Cherif
(2010)).

Table 1: Grid independence results (Grt=-88000 and Grs=10700)

Grid 90X20 100X35 150X50 200X70 300X90 350 X90 400X100

Nuc 2.45 3.28 3.25 3.39 3.10 2.85 2.81

� 0.45006 0.45005 0.45004 0.45004 0.45004 0.45005 0.45027

Vmax 1.52 1.51 1.51 1.49 1.48 1.5 1.48

3.2.2 Code validation

To check the validity of the calculation code that we have and that it can simulate the 
flow in mixed convection with heat transfer and mass. We compare our results with 
those of Oulaid, Benhamou, Galanis (2010), in the case of the evaporation of an 
extremely thin film in a vertical channel for five different thermal and solutal boundary 
conditions. We represent in Figure 2, a comparison of the streamlines for different cases, 
it illustrates the effect of buoyancy forces. On the other hand the Figure 3 shows 
comparison of the transverse vapour velocity profiles. Finally, the Figure 4 shows a 
comparison of the axial evolution of the friction factor. These results are in good 
agreement between our results and those of previous works. The agreement between 
these results allows us to ensure the validity of our Code concerning the study of this 
type of flow.

4 Results and discussions

The results are presented for an air-steam mixture with several wall conditions Tw=20°C, 
Cw=14.5g/Kg, Pr=0.71, Sc=0.56 and Re=300. The values of (the) parameters of the study 
are presented in Table2. 

Table 2: parameters of the study

Case 1 2 3 4 5Gr· -0.88 105 -1.71 .105 -2.29 .105 -1.71 .105 -1.71 .105

GrZ 1.07.104 0 1.29.104 -104 +104

4.1 Evolution of the evaporation rate along the cavity



Figure 2(a): Stream lines.Present study      Figure 2 (b): Stream lines. Oulaid study

For different thermal and solutal boundary conditions and when the two walls are 
identically heated, the rate of evaporation along the cavity is shown in Figure 2. It is 
noted that in the absence of mass transfer, evaporation rate Figure 3a, b remains null
along the channel. The velocity decreases along the line in the case of a favorable mass 
gradient to cancel at position x=15. It shows an unfavorable mass gradient to cancel a 
position x = 20. It merges with the curve representing the forced convection. In the 
immediate neighborhood of the entrance zone, we notice a small difference between both 
curves in the velocity where the evaporation rate is more important see Figure 4a, b.
When the two walls are identically heated; T\ = T9,the streamlines are axis symmetric in
Figure 5.

Figure 3: Comparison between our (the authors) results and those of [Oulaid,
Benhamou and Galais (2010)] for the transverse vapour velocity for different Grashof 
numbers
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Figure 4: Comparison between our (the authors) results and those of [Oulaid,
Benhamou and Galais (2010)] for the axial evolution of the friction coefficient.

We note a vortex region in the vicinity of the hot wall it disappears completely in the 
direction of the cold wall.

Figure 5: Stream lines and isothermal lines for different temperature cases Å9=1,0.8,0.1.

This fluid recirculation zone spreads out as the temperature of the right wall decreases. 
In the other hand when the right wall is at a higher temperature, the isotherms in Figure 5
detach increasingly more and more from the cold wall to give rise to a developing 
laminar distribution. They are almost parallel, in the case where the right wall is almost 
at zero temperature (T9 = 0).
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Figure 6: Radial profile of temperature

The radial temperature profile in Figure 6 indicates a total symmetry when the two walls 
are identically heated. However, it is found that the minimum of the curve T (y) moves 
toward the cold wall as this latter is gradually less heated.

It is noted also that this minimum decreases with temperature  T9 . Beyond a certain
value (T9 = 0.1 ) the temperature profile loses completely its symmetry and the curve T
(y) presents an inflection point. This situation reveals the presence of thermal
instabilities in the flow.

4.2 Axial velocity profile

If the two walls are identically heated, the radial velocity profile has a Poiseuille profile 
with a symmetrical reversed flow near the hot walls as shown in Figure 7

This symmetry disappears gradually as the right wall is less heated, leading to a 
completely asymmetrical profile with a displacement of the maximum velocity towards 
the cold wall. The value of this maximum decreases for T2 higher than 0,7. Beyond this 
value the maximum begins to increase. It should be noted that the reversed flow is 
entirely absent in the cold region, when T2 is less than 0.9. In contrast, at the hot wall the 
reversed flow is accentuated when the temperature T2 decreases.

A reversed flow exists on the hot wall and this is due to the presence of intense buoyancy 
forces. The area concerned by this flow is located at the entrance of the conduct and it is 
as much more extended toward the outlet as the difference in temperature of the walls is 
large. This aspect is confirmed by the radial profile of the velocity which is shown in 
Figure 7 where the negative values of the velocity are located near to the hot wall and 
also are more important as the temperature difference is large. This causes a decrease in 
the velocity. This decrease is compensated by an increase in its value beside the cold 
wall in order to keep the flow rate conservation.



Figure 7: Radial profile of velocity

The analytical study showed that the velocity of the flow is composed of two terms; one 
of them is a function of the pressure gradient and the temperature,and the other is 
dependent on temperature only. The latter has a negligible effect compared to the former 
term. This is confirmed by the values of the velocity for these cases, as we can see it in 
the radial profile of the velocity in Figure 7. It is to be noted that these values are 
comparable to those found by Podvin and Le Quéré (2013).

Figure 8: Wall friction variation τ as a function of Re/Gr for different values of aspect 

ratio A

The figure 8 shows the variation of τ versus Rey/Gr for different values of A. We notice 
that τ decreases linearly with Re / Gr for all values of A. The friction is even more 

important than the aspect ratio A is low. The maximum value is reached for A = 1, 
corresponding to a square channel. Beyond the value A = 2, the curves tend to merge, 
which shows that A = 2 is a limiting value. The intersection of these curves with the 
horizontal axis indicates the nullity of the friction coefficient. It is noted that this value is 
even greater than A is greater and it corresponds to the reversed flow. These figures 
illustrate the contour of the velocity W2 for A = 1 (square) as a function of N. It is found 
that the line for N value close to zero is in the vicinity of the horizontal and vertical walls.

Figure 9(a, b) shows the iso-values of velocity w and temperature θ. It is observed for the 

case 1 (N=0) that the reversed flow appears on the side of the cold wall and the velocity 
increases gradually as it approaches the hot wall Figure 9(b). When N increases, the 
velocity tends to have negative values.
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(a)

(b)

Figure 9: Contours lines of velocity (a) and temperature (b) for different values of N and 
for aspect ratio A=1

Figure 10: Contours lines of convection velocity for different values of N (and) for 
aspect ratio A=1

The Figure 10 is presented in the form of only one cell for the case N = 0, these values 
are positive. When N increases we get two cells, one of a positive strength and the other 
of a negative (one). The second cell spreads out increasingly as the number N increases. 
It should be noted that for N= 1 the two cells share the surface equally. In the limiting 
case A=2.2 the reverse flow is fully developed from N=0.5, in Figure 11 (a) For N = 1, 
corresponding to T1 = T2 the isotherms show the appearance of a zone increasingly hot 
on the side of the lower temperature wall this is represented in Figure 11(b).
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(a)

(b)

Figure 11: Contours lines of (a) velocity and (b)temperature for different values of N
and for aspect ratio A=2.2

4.3 Velocity and temperature radial profiles

The influence of the aspect ratio A on the radial velocity and temperature profiles for 
different values of N is shown in Figure 12(a, b): For the velocity profile 12 (a), in the 
case N=0, the figure shows that the maximum increases with the aspect ratio. It is 
situated at the center of the cross section for low values of A. For N=1, the profile in Fig 
13(a, b): is characterized by negative values of the velocity. These negative values 
indicate a reversal flow, induced by the buoyancy forces in the vicinity of the walls 
where the radial thermal gradient is positive. At the other wall the velocity presents a 
maxima, which increases with A. When, N=-1, for low values of A, the velocity radial 
profile reaches the Poiseuille profile. When A increases the profile presents a maxima 
near the walls and a minima at the center of the channel. With respect to the radial 
temperature profile (in) Figure (b), one notes that for N=0 the temperature decreases 
from its maximum value θ=1 at the hot wall to its minimum value θ=0 at the cold wall. 

However, when N=1, the temperature profile is symmetric about the channel centerline 
of the, and the minimum decreases as A increases. This aspect disappears for N=-1, 
where the two walls are maintained at opposed dimensionless temperatures values. One 
then finds (s) that the temperature curve has an inflection point which indicates the 
presence of a thermal instability. 
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Figure 12: Radial profile of convection velocity(a) and temperature (b) for different 
values of aspect ratio A

(a) (b) (c)

Figure 13: Contours lines of velocity for:  Re/Gr=2*10 3

4.4 Comparison of thermal and dynamic contours at different aspect ratios (A = 0.5, 1, 

2) for N = 0:

When the aspect ratio increases, the dynamic and thermal isolines in Figure 14(a,b,c) 
occupy more and more extended regions in the vicinity of the cold wall, this is due to the 
effect of the convection forces.
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(a) (b) (c)

Figure 14: Contours lines of temperature and velocity for N=0 and for aspect ratio 
(a)A=0.5, (b)A=1, and (c) A=2
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Figure 15: Stability curve of flow
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4.5 Flow stability curve 

The reversed flow present in some cases of temperature boundary conditions and of Re / 
Gr values is strongly dependent on the aspect ratio A. Indeed, the results show that this 
dependence is very strong for certain values below critical one 2.22. Beyond this value 
the flow is completely stable. The stability curve is determined by zero friction at the 
wall. These results are in very good agreement with those found by Cheng and Weng 
(1991).

5 Conclusion

A laminar ascending flow in a vertical channel formed by two wet parallel flat plates 
with a thin film of water is studied analytically and numerically for different conditions 
of temperature and concentration, as well as different values of the aspect ratio. The 
analytical study concerned only the thermal case whereas the numerical solution has 
considered the double diffusion.

The results obtained by the two methods are compared with each other and are checked 
against those of other authors for similar cases. A good agreement is found in particular 
for the streamlines, the local coefficients of heat and mass transfer as well as for the 
average Nusselt, Sherwood numbers and the criteria for the stability of the flow. The 
analytical study has shown that the reversed flow is present for some cases of wall 
temperature conditions and for certain values of the ratio, Re/Gr. It is also strongly 
dependent on the aspect ratio A. Indeed, the results show that this dependence is very 
strong for values less 2.22. The stability curve has been determined from the friction 
forces at the wall τ for different values of the aspect ratio A. 

In the case A=2.2 the reversed flow is developed completely from the value N=0.5.

It is noted that the wall shear decreases linearly with Re / Gr for all values of A, and the 
friction along the wall is all the more important than the aspect ratio A is low. 

The numerical results show: that in the absence of mass transfer, the evaporation rate 
remains null along the channel. The velocity decreases along the pipe in case of a
favorable mass gradient to cancel at position x=15. It increases in the case of an 
unfavorable mass gradient to cancel at position x=20 and merges with the curve 
representing the forced convection. It should be noted that there is a slight difference 
between the two curves in the immediate vicinity of the inlet region where it is found 
that the axial gradient of the rate of evaporation is larger in the case of the heat and mass 
transfer compared to the case of forced convection.

In the absence of heat transfer, curves indicate that the values of evaporation rate are less 
important than in the case of the double diffusion and they are of the order of its half. 
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