1,514 research outputs found

    Can neutrino-assisted early dark energy models ameliorate the H0H_0 tension in a natural way?

    Full text link
    The idea of neutrino-assisted early dark energy (Μ\nuEDE), where a coupling between neutrinos and the scalar field that models early dark energy (EDE) is considered, was introduced with the aim of reducing some of the fine-tuning and coincidence problems that appear in usual EDE models. In order to be relevant in ameliorating the H0H_0 tension, the contribution of EDE to the total energy density (fEDEf_\text{EDE}) should be around 10\% near the redshift of matter-radiation equality. We verify under which conditions Μ\nuEDE models can fulfill these requirements for a model with a quartic self-coupling of the EDE field and an exponential coupling to neutrinos. We find that in the situation where the EDE field is frozen initially, the contribution to fEDEf_\text{EDE} can be significant but it is not sensitive to the neutrino-EDE coupling and does not address the EDE coincidence problem. On the other hand, if the EDE field starts already dynamical at the minimum of the effective potential, it tracks this time-dependent minimum that presents a feature triggered by the neutrino transition from relativistic to nonrelativistic particles. This feature generates fEDEf_\text{EDE} in a natural way at around this transition epoch, that roughly coincides with the matter-radiation equality redshift. For the set of parameters that we considered we did not find values that satisfy the requirements on the background cosmological evolution to mitigate the Hubble tension in a natural way in this particular Μ\nuEDE model.Comment: 6 pages, 4 figures. New version with more detailed analysi

    Early dark energy constraints with late-time expansion marginalization

    Full text link
    Early dark energy (EDE) is an extension to the Λ\LambdaCDM model, proposed to reduce the tension between the measurements of the Hubble constant H0H_0 from the cosmic microwave background (CMB) and from the local cosmic distance ladder. However, this model increases the S8S_8 tension between CMB and large scale structure measurements. Analyses of galaxy clustering and lensing correlation functions report a decreased preference for EDE and its effect on the Hubble tension. Smooth dark energy models affect growth of structure through the background expansion. In this work, we study the inclusion of a general, smooth late-time dark energy modification in combination with EDE and obtain constraints on EDE marginalized over the late-time expansion. We assess the impact on the S8S_8 and Hubble tensions. In order to generalize the late expansion, we use a late dark energy fluid model with a piecewise constant equation of state w(z)w(z) over 3, 5 and 10 redshift bins in the window z∈[0,3]z \in [0,3]. We show that, when analyzing ACT and Planck CMB data combined with Pantheon supernovae, BAO from 6dF, SDSS and BOSS, Planck 2018 CMB lensing and Dark Energy Survey cosmic shear and clustering data, the inclusion of a general smooth dark energy modification at late times has no significant effect on S8S_8 and EDE parameter constraints. Using the aforementioned datasets, the EDE fraction constraint with late-time expansion marginalization is fEDE=0.067−0.027+0.019f_\mathrm{EDE} = 0.067^{+0.019}_{-0.027} using 3 redshift bins, with similar results for 5 and 10 redshift bins. This work shows that in order to solve simultaneously the Hubble and S8S_8 tensions, one needs a mechanism for increasing the clustering of matter at late times different from a simple change in the background evolution of late dark energy. [Abridged]Comment: 22 pages, 9 figure

    Boas pråticas agrícolas para as åreas de nascentes do rio Araguaia-GO/MT: controle de processos erosivos e aplicação otimizada de defensivos agrícolas.

    Get PDF
    O trabalho oferece instruçÔes para a adoção de pråticas de conservação do solo e da ågua, objetivando o controle de processos erosivos); e aplicação otimizada de defensivos agrícolas visando o controle de plantas daninhas, insetos e doenças, com proteção do aplicador e disposição correta das embalagens.bitstream/CNPMA/7462/1/comunicado_38.pd

    MARTA: A high-energy cosmic-ray detector concept with high-accuracy muon measurement

    Full text link
    A new concept for the direct measurement of muons in air showers is presented. The concept is based on resistive plate chambers (RPCs), which can directly measure muons with very good space and time resolution. The muon detector is shielded by placing it under another detector able to absorb and measure the electromagnetic component of the showers such as a water-Cherenkov detector, commonly used in air shower arrays. The combination of the two detectors in a single, compact detector unit provides a unique measurement that opens rich possibilities in the study of air showers.Comment: 11 page

    Calibration of the Logarithmic-Periodic Dipole Antenna (LPDA) Radio Stations at the Pierre Auger Observatory using an Octocopter

    Get PDF
    An in-situ calibration of a logarithmic periodic dipole antenna with a frequency coverage of 30 MHz to 80 MHz is performed. Such antennas are part of a radio station system used for detection of cosmic ray induced air showers at the Engineering Radio Array of the Pierre Auger Observatory, the so-called Auger Engineering Radio Array (AERA). The directional and frequency characteristics of the broadband antenna are investigated using a remotely piloted aircraft (RPA) carrying a small transmitting antenna. The antenna sensitivity is described by the vector effective length relating the measured voltage with the electric-field components perpendicular to the incoming signal direction. The horizontal and meridional components are determined with an overall uncertainty of 7.4^{+0.9}_{-0.3} % and 10.3^{+2.8}_{-1.7} % respectively. The measurement is used to correct a simulated response of the frequency and directional response of the antenna. In addition, the influence of the ground conductivity and permittivity on the antenna response is simulated. Both have a negligible influence given the ground conditions measured at the detector site. The overall uncertainties of the vector effective length components result in an uncertainty of 8.8^{+2.1}_{-1.3} % in the square root of the energy fluence for incoming signal directions with zenith angles smaller than 60{\deg}.Comment: Published version. Updated online abstract only. Manuscript is unchanged with respect to v2. 39 pages, 15 figures, 2 table

    Highlights from the Pierre Auger Observatory

    Full text link
    The Pierre Auger Observatory is the world's largest cosmic ray observatory. Our current exposure reaches nearly 40,000 km2^2 str and provides us with an unprecedented quality data set. The performance and stability of the detectors and their enhancements are described. Data analyses have led to a number of major breakthroughs. Among these we discuss the energy spectrum and the searches for large-scale anisotropies. We present analyses of our Xmax_{max} data and show how it can be interpreted in terms of mass composition. We also describe some new analyses that extract mass sensitive parameters from the 100% duty cycle SD data. A coherent interpretation of all these recent results opens new directions. The consequences regarding the cosmic ray composition and the properties of UHECR sources are briefly discussed.Comment: 9 pages, 12 figures, talk given at the 33rd International Cosmic Ray Conference, Rio de Janeiro 201

    Ultrahigh-energy neutrino follow-up of Gravitational Wave events GW150914 and GW151226 with the Pierre Auger Observatory

    Get PDF
    On September 14, 2015 the Advanced LIGO detectors observed their first gravitational-wave (GW) transient GW150914. This was followed by a second GW event observed on December 26, 2015. Both events were inferred to have arisen from the merger of black holes in binary systems. Such a system may emit neutrinos if there are magnetic fields and disk debris remaining from the formation of the two black holes. With the surface detector array of the Pierre Auger Observatory we can search for neutrinos with energy above 100 PeV from point-like sources across the sky with equatorial declination from about -65 deg. to +60 deg., and in particular from a fraction of the 90% confidence-level (CL) inferred positions in the sky of GW150914 and GW151226. A targeted search for highly-inclined extensive air showers, produced either by interactions of downward-going neutrinos of all flavors in the atmosphere or by the decays of tau leptons originating from tau-neutrino interactions in the Earth's crust (Earth-skimming neutrinos), yielded no candidates in the Auger data collected within ±500\pm 500 s around or 1 day after the coordinated universal time (UTC) of GW150914 and GW151226, as well as in the same search periods relative to the UTC time of the GW candidate event LVT151012. From the non-observation we constrain the amount of energy radiated in ultrahigh-energy neutrinos from such remarkable events.Comment: Published version. Added journal reference and DOI. Added Report Numbe

    Azimuthal asymmetry in the risetime of the surface detector signals of the Pierre Auger Observatory

    Get PDF
    The azimuthal asymmetry in the risetime of signals in Auger surface detector stations is a source of information on shower development. The azimuthal asymmetry is due to a combination of the longitudinal evolution of the shower and geometrical effects related to the angles of incidence of the particles into the detectors. The magnitude of the effect depends upon the zenith angle and state of development of the shower and thus provides a novel observable, (sec⁡ξ)max(\sec \theta)_\mathrm{max}, sensitive to the mass composition of cosmic rays above 3×10183 \times 10^{18} eV. By comparing measurements with predictions from shower simulations, we find for both of our adopted models of hadronic physics (QGSJETII-04 and EPOS-LHC) an indication that the mean cosmic-ray mass increases slowly with energy, as has been inferred from other studies. However, the mass estimates are dependent on the shower model and on the range of distance from the shower core selected. Thus the method has uncovered further deficiencies in our understanding of shower modelling that must be resolved before the mass composition can be inferred from (sec⁡ξ)max(\sec \theta)_\mathrm{max}.Comment: Replaced with published version. Added journal reference and DO
    • 

    corecore