1,054 research outputs found
A fixed point formula for the index of multi-centered N=2 black holes
We propose a formula for computing the (moduli-dependent) contribution of
multi-centered solutions to the total BPS index in terms of the
(moduli-independent) indices associated to single-centered solutions. The main
tool in our analysis is the computation of the refined index Tr(-y)^{2J_3} of
configurational degrees of freedom of multi-centered BPS black hole solutions
in N=2 supergravity by localization methods. When the charges carried by the
centers do not allow for scaling solutions (i.e. solutions where a subset of
the centers can come arbitrarily close to each other), the phase space of
classical BPS solutions is compact and the refined index localizes to a finite
set of isolated fixed points under rotations, corresponding to collinear
solutions. When the charges allow for scaling solutions, the phase space is
non-compact but appears to admit a compactification with finite volume and
additional non-isolated fixed points. We give a prescription for determining
the contributions of these fixed submanifolds by means of a `minimal
modification hypothesis', which we prove in the special case of dipole halo
configurations.Comment: 61 pages, 3 figure
Holographic Lovelock Gravities and Black Holes
We study holographic implications of Lovelock gravities in AdS spacetimes.
For a generic Lovelock gravity in arbitrary spacetime dimensions we formulate
the existence condition for asymptotically AdS black holes. We consider small
fluctuations around these black holes and determine the constraint on Lovelock
parameters by demanding causality of the boundary theory. For the case of cubic
Lovelock gravity in seven spacetime dimensions we compute the holographic Weyl
anomaly and determine the three point functions of the stress energy tensor in
the boundary CFT. Remarkably, these correlators happen to satisfy the same
relation as the one imposed by supersymmetry. We then compute the energy flux;
requiring it to be positive is shown to be completely equivalent to requiring
causality of the finite temperature CFT dual to the black hole. These
constraints are not stringent enough to place any positive lower bound on the
value of viscosity. Finally, we conjecture an expression for the energy flux
valid for any Lovelock theory in arbitrary dimensions.Comment: 31 pages, 1 figure, harvmac, references added, calculation of
viscosity/entropy ratio include
Overdiagnosis and overtreatment of breast cancer: Microsimulation modelling estimates based on observed screen and clinical data
There is a delicate balance between the favourable and unfavourable side-effects of screening in general. Overdiagnosis, the detection of breast cancers by screening that would otherwise never have been clinically diagnosed but are now consequently treated, is such an unfavourable side effect. To correctly model the natural history of breast cancer, one has to estimate mean durations of the different pre-clinical phases, transition probabilities to clinical cancer stages, and sensitivity of the applied test based on observed screen and clinical data. The Dutch data clearly show an increase in screen-detected cases in the 50 to 74 year old age group since the introduction of screening, and a decline in incidence around age 80 years. We had estimated that 3% of total incidence would otherwise not have been diagnosed clinically. This magnitude is no reason not to offer screening for women aged 50 to 74 years. The increases in ductal carcinoma in situ (DCIS) are primarily due to mammography screening, but DCIS still remains a relatively small proportion of the total breast cancer problem
Black Holes in Quasi-topological Gravity
We construct a new gravitational action which includes cubic curvature
interactions and which provides a useful toy model for the holographic study of
a three parameter family of four- and higher-dimensional CFT's. We also
investigate the black hole solutions of this new gravity theory. Further we
examine the equations of motion of quasi-topological gravity. While the full
equations in a general background are fourth-order in derivatives, we show that
the linearized equations describing gravitons propagating in the AdS vacua
match precisely the second-order equations of Einstein gravity.Comment: 33 pages, 4 figures; two references adde
Cardy and Kerr
The Kerr/CFT correspondence employs the Cardy formula to compute the entropy
of the left moving CFT states. This computation, which correctly reproduces the
Bekenstein--Hawking entropy of the four-dimensional extremal Kerr black hole,
is performed in a regime where the temperature is of order unity rather than in
a high-temperature regime. We show that the comparison of the entropy of the
extreme Kerr black hole and the entropy in the CFT can be understood within the
Cardy regime by considering a D0-D6 system with the same entropic properties.Comment: 20 pages; LaTeX; JHEP format; v.2 references added, v.3 Section 4
adde
A Universal Behavior of Half BPS Probes in the Superstar Ensemble
In this paper we probe the typical states of the superstar ensemble of
(hep-th/0508023) using half-BPS states of type-IIB string theory on AdS S. We find a very simple universal result that has the structure
\log\, \lag\lag \y \; \y \rag\rag_\calo \approx \a\, h \, \log N, where
is the conformal weight of the probe \y and \a is a constant that depends
mainly of the shape of the probe \y. A complete understanding of some
properties of this leading term from the dual effective superstar geometry
point of view is still lacking.Comment: 34 pages + appendice
The Weak Gravity Conjecture and the Viscosity Bound with Six-Derivative Corrections
The weak gravity conjecture and the shear viscosity to entropy density bound
place constraints on low energy effective field theories that may help to
distinguish which theories can be UV completed. Recently, there have been
suggestions of a possible correlation between the two constraints. In some
interesting cases, the behavior was precisely such that the conjectures were
mutually exclusive. Motivated by these works, we study the mass to charge and
shear viscosity to entropy density ratios for charged AdS5 black branes, which
are holographically dual to four-dimensional CFTs at finite temperature. We
study a family of four-derivative and six-derivative perturbative corrections
to these backgrounds. We identify the region in parameter space where the two
constraints are satisfied and in particular find that the inclusion of the
next-to-leading perturbative correction introduces wider possibilities for the
satisfaction of both constraints.Comment: 24 pages, 6 figures, v2: published version, refs added, minor
clarificatio
Stringy effects in black hole decay
We compute the low energy decay rates of near-extremal three(four) charge
black holes in five(four) dimensional N=4 string theory to sub-leading order in
the large charge approximation. This involves studying stringy corrections to
scattering amplitudes of a scalar field off a black hole. We adapt and use
recently developed techniques to compute such amplitudes as near-horizon
quantities. We then compare this with the corresponding calculation in the
microscopic configuration carrying the same charges as the black hole. We find
perfect agreement between the microscopic and macroscopic calculations; in the
cases we study, the zero energy limit of the scattering cross section is equal
to four times the Wald entropy of the black hole.Comment: 32 page
Comments on Holographic Entanglement Entropy and RG Flows
Using holographic entanglement entropy for strip geometry, we construct a
candidate for a c-function in arbitrary dimensions. For holographic theories
dual to Einstein gravity, this c-function is shown to decrease monotonically
along RG flows. A sufficient condition required for this monotonic flow is that
the stress tensor of the matter fields driving the holographic RG flow must
satisfy the null energy condition over the holographic surface used to
calculate the entanglement entropy. In the case where the bulk theory is
described by Gauss-Bonnet gravity, the latter condition alone is not sufficient
to establish the monotonic flow of the c-function. We also observe that for
certain holographic RG flows, the entanglement entropy undergoes a 'phase
transition' as the size of the system grows and as a result, evolution of the
c-function may exhibit a discontinuous drop.Comment: References adde
- …