42,590 research outputs found
Rotational and vibrational nonequilibrium effects in rarefied, hypersonic flow
Results are reported for an investigation into the methods by which energy transfer is calculated in the Direct Simulation Monte Carlo method. Description is made of a recently developed energy exchange model that deals with the translational and rotational modes. A new model for simulating the transfer of energy between the translational and vibrational modes is also explained. This model allows the vibrational relaxation time to follow the temperature dependence predicted by the Landau-Teller theory at moderate temperatures. For temperatures in excess of about 8000K the vibrational model is extended to include an empirical result for the relaxation time. The effect of introducing these temperature dependent collision numbers into the DSMC technique is assessed by making calculations representative of the stagnation streamline of a hypersonic space vehicle. Both thermal and chemical nonequilibrium effects are included while the flow conditions have been chosen such that ionization and radiation may be neglected. The introduction of these new models is found to significantly affect the degree of thermal nonequilibrium observed in the flowfield. Larger, and more widely ranging, differences in the results obtained with the different energy exchange probabilities are found when a significant amount of internal energy is included in the calculation of chemical nonequilibrium
Constraints on anomalous spin-spin interactions from spin-exchange collisions
Measured and calculated cross sections for spin-exchange between alkali atoms
and noble gases (specifically sodium and helium) are used to constrain
anomalous spin-dependent forces between nuclei at the atomic scale (). Combined with existing stringent limits on anomalous
short-range, spin-dependent couplings of the proton, the dimensionless coupling
constant for a heretofore undiscovered axial vector interaction of the neutron
arising from exchange of a boson of mass is constrained
to be . Constraints are
established for a velocity- and spin-dependent interaction \propto
\prn{\mathbf{I} \cdot \mathbf{v}} \prn{\mathbf{K} \cdot \mathbf{v}}, where
and are the nuclear spins of He and Na, respectively,
and is the relative velocity of the atoms. Constraints on torsion
gravity are also considered.Comment: 6 pages, 4 figure
Fitting Jump Models
We describe a new framework for fitting jump models to a sequence of data.
The key idea is to alternate between minimizing a loss function to fit multiple
model parameters, and minimizing a discrete loss function to determine which
set of model parameters is active at each data point. The framework is quite
general and encompasses popular classes of models, such as hidden Markov models
and piecewise affine models. The shape of the chosen loss functions to minimize
determine the shape of the resulting jump model.Comment: Accepted for publication in Automatic
Forced convection and flow boiling with and without enhancement devices for top-side-heated horizontal channels
The effect of enhancement devices on flow boiling heat transfer in coolant channels, which are heated either from the top side or uniformly was studied. Studies are completed of the variations in the local (axial and circumferential) and mean heat transfer coefficients in horizontal, top-heated coolant channels with smooth walls and internal heat transfer enhancement devices. The working fluid is freon-11. The objectives are to: (1) examine the variations in both the mean and local (axial and circumferential) heat transfer coefficients for a circular coolant channel with either smooth walls or with both a twisted tape and spiral finned walls; (2) examine the effect of channel diameter (and the length-to-diameter aspect ratio) variations for the smooth wall channel; and (3) develop and improved data reduction analysis. The case of the top-heated, horizontal flow channel with smooth wall (1.37 cm inside diameter, and 122 cm heated length) was completed. The data were reduced using a preliminary analysis based on the heated hydraulic diameter. Preliminary examination of the local heat transfer coefficient variations indicated that there are significant axial and circumferential variations. However, it appears that the circumferential variation is more significant than the axial ones. In some cases, the circumferential variations were as much as a factor of ten. The axial variations rarely exceeded a factor of three
Flow boiling with enhancement devices for cold plate coolant channel design
A research program to study the effect of enhancement devices on flow boiling heat transfer in coolant channels, which are heated either from the top side or uniformly, is discussed. Freon 11 is the working fluid involved. The specific objectives are: (1) examine the variations in both the mean and local (axial and circumferential) heat transfer coefficients for a circular coolant channel with either smooth walls or with both a twisted tape and spiral finned walls, (2) examine the effect channel diameter (and the length-to-diameter aspect ratio) variations for the smooth wall channel, and (3) develop an improved data reduction analysis
Flow boiling with enhancement devices for cold plate coolant channel design
The effects of enhancement devices on flow boiling heat transfer in circular coolant channels, which are heated over a fraction of their perimeters, are studied. The variations were examined in both the mean and local (axial, and circumferential) heat transfer coefficients for a circular coolant channel with either smooth walls or with both a twisted tape and spiral finned walls. Improvements were initiated in the present data reduction analysis. These efforts should lead to the development of heat transfer correlations which include effects of single side heat flux and enhancement device configuration. It is hoped that a stage will be set for the study of heat transfer and pressure drop in single sided heated systems under zero gravity conditions
Dynamic Matrix Factorization with Priors on Unknown Values
Advanced and effective collaborative filtering methods based on explicit
feedback assume that unknown ratings do not follow the same model as the
observed ones (\emph{not missing at random}). In this work, we build on this
assumption, and introduce a novel dynamic matrix factorization framework that
allows to set an explicit prior on unknown values. When new ratings, users, or
items enter the system, we can update the factorization in time independent of
the size of data (number of users, items and ratings). Hence, we can quickly
recommend items even to very recent users. We test our methods on three large
datasets, including two very sparse ones, in static and dynamic conditions. In
each case, we outrank state-of-the-art matrix factorization methods that do not
use a prior on unknown ratings.Comment: in the Proceedings of 21st ACM SIGKDD Conference on Knowledge
Discovery and Data Mining 201
- …
