678 research outputs found
Tuplix Calculus
We introduce a calculus for tuplices, which are expressions that generalize
matrices and vectors. Tuplices have an underlying data type for quantities that
are taken from a zero-totalized field. We start with the core tuplix calculus
CTC for entries and tests, which are combined using conjunctive composition. We
define a standard model and prove that CTC is relatively complete with respect
to it. The core calculus is extended with operators for choice, information
hiding, scalar multiplication, clearing and encapsulation. We provide two
examples of applications; one on incremental financial budgeting, and one on
modular financial budget design.Comment: 22 page
Mechanistic Behavior of Single-Pass Instruction Sequences
Earlier work on program and thread algebra detailed the functional,
observable behavior of programs under execution. In this article we add the
modeling of unobservable, mechanistic processing, in particular processing due
to jump instructions. We model mechanistic processing preceding some further
behavior as a delay of that behavior; we borrow a unary delay operator from
discrete time process algebra. We define a mechanistic improvement ordering on
threads and observe that some threads do not have an optimal implementation.Comment: 12 page
Recommended from our members
A micromechanical fracture analysis to investigate the effect of healing particles on the overall mechanical response of a self-healing particulate composite
A computational fracture analysis is conducted on a selfāhealing particulate composite employing a finite element model of an actual microstructure. The key objective is to quantify the effects of the actual morphology and the fracture properties of the healing particles on the overall mechanical behaviour of the (MoSi2) particleādispersed Yttria Stabilised Zirconia (YSZ) composite. To simulate fracture, a cohesive zone approach is utilised whereby cohesive elements are embedded throughout the finite element mesh allowing for arbitrary crack initiation and propagation in the microstructure. The fracture behaviour in terms of the composite strength and the percentage of fractured particles is reported as a function of the mismatch in fracture properties between the healing particles and the matrix as well as a function of particle/matrix interface strength and fracture energy. The study can be used as a guiding tool for designing an extrinsic selfāhealing material and understanding the effect of the healing particles on the overall mechanical properties of the material
Recommended from our members
A cohesive-zone crack healing model for self-healing materials
A cohesive zone-based constitutive model, originally developed to model fracture, is extended to include a healing variable to simulate crack healing processes and thus recovery of mechanical properties. The proposed cohesive relation is a composite-type material model that accounts for the properties of both the original and the healing material, which are typically different. The constitutive model is designed to capture multiple healing events, which is relevant for self-healing materials that are capable of generating repeated healing. The model can be implemented in a finite element framework through the use of cohesive elements or the extended finite element method (XFEM). The resulting numerical framework is capable of modeling both extrinsic and intrinsic self-healing materials. Salient features of the model are demonstrated through various homogeneous deformations and healing processes followed by applications of the model to a self-healing material system based on embedded healing particles under non-homogeneous deformations. It is shown that the model is suitable for analyzing and optimizing existing self-healing materials or for designing new self-healing materials with improved lifetime characteristics based on multiple healing events
Recommended from our members
Cohesive-zone modelling of crack nucleation and propagation in particulate composites
A cohesive-zone approach is used to study the interaction between an approaching crack and a particle embedded in a matrix material as a function of the mismatch in elastic and fracture properties. Crack-particle interaction is a crucial issue governing fracture behavior of particle-dispersed materials. Special attention is given in the present work to the effect of the mismatch in fracture properties, namely fracture strength and energy, which has not been fully-explored in the literature. Based on extensive finite element simulations using cohesive elements, the basic fracture mechanisms governing the crack-particle interaction are identified, namely particle fracture, crack deflection and interface debonding. The details of the cracking sequences are elucidated and the role of secondary cracks is highlighted. The effect of pre-existing flaws on the fracture behavior is analyzed both for flaws inside the particle as well as flaws on the particle/matrix interface. Several flaw configurations in terms of size, orientation and location are considered. In addition, the effect of the mismatch between the matrix and the interface fracture properties is also considered for a wide range of adhesive characteristics. The results of the simulations are summarized in the form of several fracture maps for different configurations, whereby the main fracture mechanisms are identified in regions inside a two-dimensional space of strength and toughness mismatch between the particle and the matrix. It is observed that the mismatch in the fracture properties usually plays a more dominant role on the crack trajectory than the mismatch in elastic properties in a particle-dispersed system. Pre-existing flaws/defects in the particle and the interface are found to be one of the principal controlling factors that alter the crack propagation characteristics. These results can be used as a guideline for designing particulate composite system with a preferred fracture mechanism, namely matrix cracking, interface debonding or particle fracture
Prerequisites for Affective Signal Processing (ASP) - Part III
This is the third part in a series on prerequisites for affective signal processing (ASP). So far, six prerequisites were identified: validation (e.g., mapping of constructs on signals), triangulation, a physiology-driven approach, and contributions of the signal processing community (van den Broek et al., 2009) and identification of users and theoretical specification (van den Broek et al., 2010). Here, two additional prerequisites are identified: integration of biosignals, and physical characteristics
Automated interpretation of benthic stereo imagery
Autonomous benthic imaging, reduces human risk and increases the amount of collected data. However, manually interpreting these high volumes of data is onerous, time consuming and in many cases, infeasible. The objective of this thesis is to improve the scientific utility of the large image datasets. Fine-scale terrain complexity is typically quantified by rugosity and measured by divers using chains and tape measures. This thesis proposes a new technique for measuring terrain complexity from 3D stereo image reconstructions, which is non-contact and can be calculated at multiple scales over large spatial extents. Using robots, terrain complexity can be measured without endangering humans, beyond scuba depths. Results show that this approach is more robust, flexible and easily repeatable than traditional methods. These proposed terrain complexity features are combined with visual colour and texture descriptors and applied to classifying imagery. New multi-dataset feature selection methods are proposed for performing feature selection across multiple datasets, and are shown to improve the overall classification performance. The results show that the most informative predictors of benthic habitat types are the new terrain complexity measurements. This thesis presents a method that aims to reduce human labelling effort, while maximising classification performance by combining pre-clustering with active learning. The results support that utilising the structure of the unlabelled data in conjunction with uncertainty sampling can significantly reduce the number of labels required for a given level of accuracy. Typically 0.00001ā0.00007% of image data is annotated and processed for science purposes (20ā50 points in 1ā2% of the images). This thesis proposes a framework that uses existing human-annotated point labels to train a superpixel-based automated classification system, which can extrapolate the classified results to every pixel across all the images of an entire survey
A nano-indentation study on the mechanical behaviour of the matrix material in an AA6061-Al2O3 MMC
The nano-indentation technique is a suitable technique to measure hardness and elastic moduli profiles of AA6061 reinforced with Al2O3 particles, since it allows measurements of mechanical properties on a micrometer range. To investigate possible local variations in mechanical behaviour of the matrix material due to precipitation reactions being affected by the presence of ceramic reinforcements, nano-indentation tests were done on both metal matrix composite (MMC) as well as unreinforced reference material, in three different heat treatment conditions. Matrix response depends on heat treatment condition, but is approximately equal for the MMC and the base reference alloy. Due to the various imposed heat treatments, magnesium enrichment around the ceramic particles was observed, but hardness and elastic modulus of this interfacial layer could not be measured. To confirm the preferential segregation of Mg near the particle/matrix interface, linescans were made with a Scanning Electron Microscope (SEM) equipped with EDS (Energy Dispersive Spectrum) facilities. The limited width of the Mg rich zone explains the absence of typical ''interphase'' indentations in this investigation. Hardly any differences in calculated elastic moduli and hardness values were found for the three heat treatment conditions investigated, when comparing results of AA6061 reference material with results of an AA6061 matrix in an MMC. This result is of great importance when modelling the mechanical behaviour of MMCs using the finite element method, since it permits the assumption that the MMC matrix material behaves similar to the same aluminium alloy without ceramic reinforcements
Prerequisites for Affective Signal Processing (ASP) - Part V: A response to comments and suggestions
In four papers, a set of eleven prerequisites for affective signal processing (ASP) were identified (van den Broek et al., 2010): validation, triangulation, a physiology-driven approach, contributions of the signal processing community, identification of users, theoretical specification, integration of biosignals, physical characteristics, historical perspective, temporal construction, and real-world baselines. Additionally, a review (in two parts) of affective computing was provided. Initiated by the reactions on these four papers, we now present: i) an extension of the review, ii) a post-hoc analysis based on the eleven prerequisites of Picard et al.(2001), and iii) a more detailed discussion and illustrations of temporal aspects with ASP
- ā¦