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Abstract Threads as contained in a thread algebra are used for the modeling of se-
quential program behavior. A thread that may use a counter to control its execution is
called a ‘one-counter thread’. In this paper the decidability of risk assessment (a cer-
tain form of action forecasting) for one-counter threads is proved. This relates to
Cohen’s impossibility result on virus detection (Comput. Secur. 6(1), 22–35, 1984).
Our decidability result follows from a general property of the traces of one-counter
threads: if a state is reachable from some initial state, then it is also reachable along
a path in which all counter values stay below a fixed bound that depends only on the
initial and final counter value. A further consequence is that the reachability of a state
is decidable. These properties are based on a result for ω-one counter machines by
Rosier and Yen (SIAM J. Comput. 16(5), 779–807, 1987).

Keywords One-counter systems · Thread algebra · Reachability · Risk assessment

1 Introduction

Threads as contained in a thread algebra are used for the modeling of sequential pro-
gram behavior. Threads may make use of services such as a counter or a stack to con-
trol their execution. A regular thread using a counter is called a ‘one-counter thread’.
One-counter threads form a proper subclass of the pushdown threads as studied in [6],
i.e. regular threads that may use a stack over a finite sort. In that paper it is shown that
equality of pushdown threads is decidable, while their inclusion is not. The latter un-
decidability result even holds for one-counter threads (of course, a counter is similar
to a stack over a one-element data type).
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In this paper the decidability of a certain form of risk assessment for one-counter
threads is proved. We assume that risks are modeled by the execution of an action
risk, and the question is to forecast the execution of risk given the specification of
the thread under execution. For pushdown threads this type of forecasting is decid-
able: rename the action(s) to be forecast and decide whether the thread thus obtained
equals the original one. Forecasting becomes much more complicated if a thread may
contain test actions that yield a reply according to the result of this type of forecast-
ing. For example, assume that a thread may contain a test action ok that yields true if
its true-branch does not execute risk, and false otherwise. Then a current test action
ok in the code to be inspected may yield true because a future one will yield false.
The reply to these ok actions can be modeled using a risk assessment service. For reg-
ular threads, such a service has a decidable reply function [7], while for pushdown
threads this is still an open question. In this paper we show that the associated service
is decidable for one-counter threads, thereby answering one of the open questions
in [7].

Our modeling of risk assessment—that is, the existence of a test action ok and a
risk assessment service as described above—was introduced in [5]. This modeling
was inspired by Cohen’s well-known impossibility result on virus detection [8], first
described in 1984. Essentially, Cohen’s result establishes the non-existence of a test
that decides whether or not a code fragment is virus-free. This point will be elaborated
on in our conclusions.

In technical terms the decidability result of the present paper is based on a reach-
ability result for so-called ω-one counter machines, proved by Rosier and Yen [13]
in 1987. This result implies a general property of the traces of one-counter threads:
if a state is reachable from some initial state, then it is also reachable along a path in
which all counter values stay below a fixed bound that depends only on the initial and
final counter value.

The paper is structured as follows. In the next section we introduce the basics of
thread algebra and services. Then, in Sect. 3, we discuss one-counter threads and
the above-mentioned reachability result. In Sect. 4 we recall that risk assessment
for regular threads is decidable and come up with a new short proof of this fact.
Furthermore, we use our proof technique to show the decidability of risk assessment
for one-counter threads. In Sect. 5 we prove some further reachability results for one-
counter threads. Finally, in Sect. 6 we end with some conclusions.

2 Threads and Services

We introduce the basics of thread algebra and thread-service composition. For a gen-
eral introduction we refer to [12].

2.1 Basic Thread Algebra

Basic Thread Algebra (BTA) is a form of process algebra which is tailored to the
description of sequential program behavior. Based on a set A of actions, it has the
following constants and operators:
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• the termination constant S,
• the deadlock or inaction constant D,
• for each a ∈ A, a binary post-conditional composition operator _ � a � _.

We use action prefixing a ◦ P as an abbreviation for P � a � P and take ◦ to bind
strongest. Furthermore, for n ≥ 1 we define an ◦P by a1 ◦P = a ◦P and an+1 ◦P =
a ◦ (an ◦ P).

The operational intuition is that each action represents a command which is to be
processed by the execution environment of the thread. The processing of a command
may involve a change of state of this environment.1 At completion of the processing
of the command, the environment produces a reply value true or false. The thread
P � a � Q proceeds as P if the processing of a yields true, and it proceeds as Q if
the processing of a yields false. Note that a single action is not a thread, and that
threads as introduced here always “end” in S or D. We can depict threads as in the
following example:

Here, an action symbol between angular brackets represents the execution of the ac-
tion, with an arrow descending to the left leading to the subsequent execution in case
the reply value for the action is true, and an arrow descending to the right leading
to the subsequent execution in case the reply value for the action is false. In the
case that these lead to the same state (action prefix) the descent is vertical, and the
action symbol is placed between square brackets.

Every thread in BTA is finite in the sense that there is a finite upper bound to
the number of consecutive actions it can perform. The approximation operator π :
N × BTA → BTA gives the behavior up to a specified depth. It is defined by

1. π(0,P ) = D,
2. π(n + 1,S) = S, π(n + 1,D) = D,
3. π(n + 1,P � a � Q) = π(n,P ) � a � π(n,Q),

for P,Q ∈ BTA and n ∈ N. We further write πn(P ) instead of π(n,P ). We find that
for every P ∈ BTA, there exists an n ∈ N such that

πn(P ) = πn+1(P ) = · · · = P.

2.2 Infinite Threads

Following the metric theory of [9] in the form developed as a model for the process
algebra ACP in [3], BTA has a completion BTA∞ which comprises also the in-

1For the definition of threads we completely abstract from the environment. In Sect. 2.3 we define services
which model (part of) the environment, and thread-service composition.
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finite threads. Standard properties of the completion technique yield that we may
take BTA∞ as the cpo consisting of all so-called projective sequences of finite
threads:2

BTA∞ = {(Pn)n∈N | ∀n ∈ N (Pn ∈ BTA & πn(Pn+1) = Pn)}.
We give an exposition of this construction containing all definitions required for this
paper; for a detailed account and further motivation we refer to [1, 14].

Overloading notation, we define the constants and operators of BTA on BTA∞:

1. D = (D,D, . . .) and S = (D,S,S, . . .),
2. (Pn)n∈N � a � (Qn)n∈N = (Rn)n∈N with R0 = D and Rn+1 = Pn � a � Qn.

The elements of BTA are included in BTA∞ by a mapping following this definition:

D �→ (D,D,D, . . .), S �→ (D,S,S, . . .),

and if P �→ (Pn)n∈N and Q �→ (Qn)n∈N, then

P � a � Q �→ (Rn)n∈N

with R0 = D and Rn+1 = Pn � a � Qn.
It is not difficult to show that the projective sequence of P ∈ BTA defined thus

equals (πn(P ))n∈N. We further use this inclusion of finite threads in BTA∞ implicitly
and write P,Q, . . . to denote elements of BTA∞.

We define the set Res(P ) of residual threads of P inductively as follows:

1. P ∈ Res(P ),
2. Q � a � R ∈ Res(P ) implies Q ∈ Res(P ) and R ∈ Res(P ).

A residual thread may be reached (depending on the execution environment) by per-
forming zero or more actions. A thread P is regular if Res(P ) is finite.

A linear specification over BTA∞ is a set

{x = tx | x ∈ Var}
of recursive equations for a set Var of variables, where all tx are terms of the form
S, D, or y � a � z with y, z ∈ Var. Finite linear specifications represent continuous
operators; each variable has a unique fixed point as solution [14].

Proposition 1 For all P ∈ BTA∞, P is regular if and only if P is the solution of a
finite linear specification.

Proof For the if-part: Assume that P is the solution of a finite linear recursive speci-
fication. Because the variables in a finite linear specification have unique fixed points,
we know that there are threads P1, . . . ,Pn ∈ BTA∞ with P = P1, and for every

2The cpo is based on the partial ordering 	 defined by D 	 P , and P 	 P ′ , Q 	 Q′ implies P � a �Q 	
P ′ � a � Q′ .
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i ∈ {1, . . . , n}, either Pi = D, Pi = S, or Pi = Pj � a �Pk for some j, k ∈ {1, . . . , n}.
We find that Q ∈ Res(P ) if and only if Q = Pi for some i ∈ {1, . . . , n}. So Res(P ) is
finite, and P is regular.

For the only-if-part: Suppose P is regular. Then Res(P ) is finite, so P has residual
threads P1, . . . ,Pn with P = P1. We construct a linear specification with variables
x1, . . . , xn as follows:

xi =
⎧
⎨

⎩

D if Pi = D,
S if Pi = S,
xj � a � xk if Pi = Pj � a � Pk . �

We shall further describe regular threads by finite linear specifications. More-
over, in reasoning with such specifications, we shall identify variables and their fixed
points. For example, we say that x is the thread defined by x = a ◦ x instead of sta-
ting that some thread P equals the fixed point for x in the finite linear specification
x = a ◦ x.

Example 1 Consider the finite linear specification defined by the following five equa-
tions:

x1 = x2 � c.inc � x4,

x2 = a ◦ x3,

x3 = x1 � c.dec � x5,

x4 = D,

x5 = S.

The actions c.inc and c.dec are requests to a counter service as will be explained
below; we come back to this specification in Example 2. The regular thread x1 can
be depicted as follows (cf. the picture in Sect. 2.1):

Here the state with the action c.inc represents the regular thread x1, and the state
with the action a represents the regular thread x2, etc.

Observe that each finite linear specification can be depicted as a finite flowchart
(in the style as displayed above) in which each state represents a regular thread.
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2.3 Services and Thread-Service Composition

A thread P � a � Q is non-deterministic in the sense that upon execution of the ac-
tion a, both P and Q are possible subsequent behaviors. Which one is executed de-
pends on the reply value for the action that is returned by the execution environment,
and in general we do not know what this reply will be. We now define the composi-
tion of a thread and a service that models a part of the environment of the thread. In
order to define the interaction between threads and services, we let all actions be of
the form f.m where f is the so-called focus and m is the method. Furthermore, let
focus(_) be the mapping that extracts the focus of an action:

focus(f.m) = f.

We interpret an action f.m as a request to a service that is known to the thread as f .
A service answering to such requests is defined as follows.

A service is a pair H = 〈M,F 〉 consisting of a set M of methods and a reply
function F that gives for each non-empty finite sequence of methods from M a reply
value true or false. These sequences represent the history of the service: on in-
put ν = m1 . . .mk+1, for some k ≥ 0, the function F gives the reply value for method
mk+1 if m1, . . . ,mk were called before. We shall write Hν for service H with his-
tory ν, and H for the service Hε where ε is the empty sequence, so this is the service
in its initial state.

For a service H = 〈M,F 〉 and a thread P , P /f Hν represents P using the service
Hν via focus f . The defining rules for threads in BTA are:

S /f Hν = S,

D /f Hν = D,

(P � g.m � Q) /f Hν = (P /f Hν) � g.m � (Q /f Hν) if g = f,

(P � f.m � Q) /f Hν = P /f Hνm if m ∈ M and F(νm) = true,

(P � f.m � Q) /f Hν = Q /f Hνm if m ∈ M and F(νm) = false,

(P � f.m � Q) /f Hν = D if m ∈ M.

The operator /f is called the use operator and stems from [4]. An expression
P /f Hν is sometimes referred to as a thread-service composition. The use opera-
tor is expanded to infinite threads in BTA∞ by defining

(Pn)n∈N /f Hν =
⊔

n∈N

Pn /f Hν.

(Cf. [2].) It follows that the rules for finite threads are valid for infinite threads as
well. Observe that the requests to the service do not occur as actions in the behav-
ior of a thread-service composition. So the composition not only reduces the above-
mentioned non-determinism of the thread, but also hides the associated actions.

A (natural number) counter C can be defined as a service with methods inc and
dec, where inc increases the counter value and yields reply true, and dec decreases
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the value with reply true if the current value is larger than 0, and yields false
otherwise (while the counter value remains 0). It is sufficient and more convenient
to represent the state of C by its number value rather than as a method history, so
we write C(n) for a counter service C holding value n ≥ 0. Troughout this paper we
assume that threads use focus c to address a counter service, and that inc and dec are
the only requests made to it. By the defining equations for thread-service composition
we find that, for any thread x,

(c.inc ◦ x) /c C(n) = x /c C(n + 1),

and

(x � c.dec � y) /c C(n) =
{

y /c C(0) if n = 0,
x /c C(n − 1) if n ≥ 1.

Example 2 Consider again the thread x1 defined in Example 1 by

x1 = x2 � c.inc � x4,

x2 = a ◦ x3,

x3 = x1 � c.dec � x5,

x4 = D,

x5 = S,

and assume that focus(a) = c. For any n ∈ N, we find that

x1 /c C(n) = x2 /c C(n + 1)

= a ◦ (x3 /c C(n + 1))

= a ◦ (x1 /c C(n)).

So this thread performs an infinite loop consisting of the action a. Observe how the
composition with the counter service hides the counter actions c.inc and c.dec.

Example 3 The equation x = c.inc◦x defines the infinite thread (Pn)n∈N with P0 = D
and Pn+1 = (c.inc)n+1 ◦D. We find that Pn /c C(0) = D for all n ∈ N, so by definition
x /c C(0) = D.

This last example implies that we identify “livelock” and deadlock, and explains
why we also use the name inaction for this state of affairs. Although this may seem
to illustrate a weakness in expressive power, it proves to be a nice abstraction charac-
terizing the absence of observable activity (any action or termination).

In the next example we show that the use of a counter service may turn regular
threads into non-regular ones.
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Example 4 Consider the regular thread x defined by3

x = c.inc ◦ x � a � y, y = b ◦ y � c.dec � S,

where focus(a) = c = focus(b). Then, for all n ∈ N,

x /c C(n) = (c.inc ◦ x � a � y) /c C(n)

= (x /c C(n + 1)) � a � (y /c C(n)),

y /c C(0) = S,

y /c C(n + 1) = b ◦ (y /c C(n)).

The thread x /c C(0) can be depicted as follows (cf. the examples in Sects. 2.1
and 2.2):

It is not hard to see that x /c C(0) is an infinite thread with the property that for
all n, a trace of n + 1 a-actions produced by n replies true and one reply false
is followed by bn ◦ S. This yields a non-regular thread: if x /c C(0) were regular, it
would be a fixed point of some finite linear specification, say with k equations. But
specifying a trace bk ◦ S already requires k + 1 linear equations x1 = b ◦x2, . . . , xk =
b ◦ xk+1, xk+1 = S, which contradicts the assumption. So x /c C(0) is not regular.

3 One-Counter Threads

In this section we introduce one-counter threads, i.e., threads that are reminiscent
of various one-counter systems that occur in the literature (cf. [10, 11, 13, 15]). We
focus on reachability under bounded counter values and transform a result by Rosier
and Yen [13] to the setting of thread algebra.

3.1 One-Counter Threads and their Linear Specifications

A one-counter thread is a possibly non-regular thread that can be defined as the com-
position of a regular thread with a single counter service. We have found (cf. Exam-
ple 4) that one-counter threads are not necessarily regular, so need not be specifiable
by a finite linear specification. We define the infinite linear specification EC derived
from a finite linear specification E used to define a one-counter thread.

3Observe that a linear specification of x contains (at least) five equations.
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Definition 1 Let E be a finite linear specification of a thread using a counter via
focus c. Define

EC = {x(n) = tx,n | x ∈ Var(E), n ∈ N}
as the least set satisfying for all (x = tx) ∈ E and for all n ∈ N,

– if tx = S then tx,n = S,
– if tx = D then tx,n = D,
– if tx = y � a � z with focus(a) = c, then tx,n = y(n) � a � z(n),
– if tx = y � c.inc � z, then tx,n = c.inc ◦ y(n + 1),
– if tx = y � c.dec � z, then tx,0 = c.dec ◦ z(0) and tx,n+1 = c.dec ◦ y(n).

The infinite linear specification EC mimicks the composition of a thread defined
by E with a counter service. However, in contrast to the thread-service composition,
the counter actions remain observable. By construction, these actions occur in the
equations of EC as action prefix only. In this way, these equations incorporate the re-
ply to the action, and we shall further refer to the counter actions in EC as interactions
rather than requests. We find that

x /c C(n) = x(n) /c C(n) for all x ∈ Var(E) and n ∈ N, (1)

where on the right-hand side we have added a use application /c in order to hide the
interactions with the counter. Further observe that in this last application the counter
value is immaterial; it is also true that

x /c C(n) = x(n) /c C(m)

for all m ∈ N.
We continue with the definition of action relations and traces between the states

of a specification EC as just defined. We write

x(n)
a:b
� y(m)

to denote that state x(n) can evolve into state y(m) by the execution of the action a

with reply value b ∈ {true,false}. We call these labels a:b polarized actions, and
we use the letter α to denote them. The action relations for EC are defined by

x(n)
a:true

� y(m) and x(n)
a:false

� z(m)

for all (x(n) = y(m) � a � z(m)) ∈ EC . A trace r : x(n)
σ

� x′(n′) is a sequence

x0(n0)
α0

� x1(n1)
α1

� · · · αk−1
� xk(nk)

for some k ≥ 0 with σ = α0 . . . αk−1, x = x0, n = n0, x′ = xk , and n′ = nk . For such
a trace we further define labels(r) = {α0, . . . , αk−1}.

We end this section with the definition of finite approximations of an infinite linear
specification. Such approximations are used in Sect. 4.2 to prove the main result of
this paper.
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Definition 2 Given the infinite linear specification EC for E we construct the ap-
proximation of EC up to finite depth N , by redefining tx,n for n > N as D, and conse-
quently identifying all x(n) for n > N . This yields a finite linear specification, which
we shall denote by Appr(N,EC ).

Remark In the above definition, we also could have chosen S or in fact any legal term
for tx,n with n > N (e.g., x(n) = a ◦ x(n) or x(n) = c.inc ◦ x(n)). This is the case
because we will use these approximations only in applications in which the x(n) for
n > N play no role.

3.2 ω-One Counter Machines

We briefly introduce the ω-one counter machine (ω-1CM for short) as defined in [13].
Let Q be a set of states, � an input alphabet, and Z and B symbols indicating whether
the counter value is zero or positive, respectively. Then the operation of an ω-1CM is
defined by a transition function

δ : Q × � × {Z,B} → 2Q×{−1,0,1}.

Here, the value −1, 0, or 1 at the target states indicates whether the counter value
decreased, remained unchanged, or increased during the transition. For example, if
δ(q, a,Z) = δ(q, a,B) = {(q ′,0)}, then the execution of a in state q leads to state
q ′. Moreover, this execution does not depend on the counter value and does not have
an effect on it. In this case δ(q, a,Z) and δ(q, a,B) both define one transition. The
definition of an ω-1CM is completed by specifying an initial state and a set of desig-
nated state sets (the latter one is used to express various notions of fairness, see [13]),
however, we will not use these two ingredients.

The computations of an ω-1CM using a counter are formalized as follows. A con-
figuration of an ω-1CM is a 3-tuple (q, j, n) where q ∈ Q is the current state, j is the
current length of the computation (initially 0), and n is the value of the counter. The
transition function δ defines the one-step computations: c �a c′ denotes that config-
uration c can lead to configuration c′ in a single step that reads symbol a ∈ �. The
definition is as follows: (q, j, n) �a (q ′, j + 1, n′) if, and only if, a is the (j + 1)-th
action symbol that is read, and either

– n = n′ = 0 and (q ′,0) ∈ δ(q, a,Z), or
– n = n′ > 0 and (q ′,0) ∈ δ(q, a,B), or
– n = 0, n′ = n + 1 and (q ′,1) ∈ δ(q, a,Z), or
– n > 0, n′ = n + 1 and (q ′,1) ∈ δ(q, a,B), or
– n > 0, n′ = n − 1 and (q ′,−1) ∈ δ(q, a,B).

A computation c �σ c′ is a sequence

c0 �a0 c1 �a1 · · · �ak−1 ck

for some k ≥ 0 with c = c0, c′ = ck and σ = a0a1 . . . ak−1.
The following lemma is a result by Rosier and Yen (Lemma 4.3 in [13]):
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Lemma 1 For any ω-1CM with transition function δ, if r : (q, j, n) �σ (q ′, j ′, n′) is
a computation for some σ , then there exists a computation r ′ : (q, j, n) �ρ (q ′, j ′′, n′)
with the following properties:

1. The set of transitions used in r is identical to the set of transitions used in r ′, and
2. Every configuration (p, i,m) in r ′ satisfies m ≤ 3 · s3 + max(n,n′), where s is the

number of transitions defined by δ.

3.3 From Threads to Machines

We construct an ω-1CM for a one-counter thread specification E such that the com-
putations of the constructed ω-1CM correspond directly to the traces of the infinite
specification EC (see Definition 1). The counterpart of Lemma 1 for the traces of EC
then follows straightforwardly.

Take state set Q = Var(E). The input alphabet � (consisting of polarized actions)
and the transitions of the ω-1CM follow from the following transformation on the
equations in E. Each equation x = y � c.inc � z yields the two transitions

δ(x, c.inc:true,Z) = δ(x, c.inc:true,B) = {(y,1)},
each equation x = y � c.dec � z yields the two transitions

δ(x, c.dec:false,Z) = {(z,0)} and δ(x, c.dec:true,B) = {(y,−1)},
and each equation x = y � a � z for a ∈ {c.inc, c.dec} yields the four transitions

δ(x, a:true,Z) = δ(x, a:true,B) = {(y,0)}
and

δ(x, a:false,Z) = δ(x, a:false,B) = {(z,0)}.
The action relations of EC correspond by definition to the one-step computations

of the machine constructed for E:

x(n)
α

� y(n′) if and only if (x, j, n) �α (y, j + 1, n′) for all j ≥ 0.

Clearly this correspondence extends to traces, i.e.,

x(n)
σ

� y(n′) if and only if (x,0, n) �σ (y, |σ |, n′), (2)

so that the counterpart of Lemma 1 for traces of EC reads as follows:

Lemma 2 Let E be a finite linear specification. If r : x(n)
σ

� y(n′) is a trace in EC ,

then there is a trace r ′ : x(n)
ρ

� y(n′) with the following properties:

1. labels(σ ) = labels(ρ), and
2. Every state z(m) of r ′ satisfies m ≤ 3 · (4 · |Var(E)|)3 + max(n,n′).
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Proof By Lemma 1, and the construction and (2) given above. Observe that s ≤
4 · |Var(E)| where s the number of transitions of the ω-1CM constructed for E. �

This reachability result for EC traces suffices for the correctness of risk assessment
for one-counter threads (the main result of this article) presented in Sect. 4. In Sect. 5
we address reachability results for one-counter threads with states of the form x /c

C(n) rather than for the states x(n) of EC . These results will follow from Lemma 2.

4 Risk Assessment for Regular and One-Counter Threads

In this section we discuss risk assessment services. We introduce this topic for regular
threads, although the decidability of a risk assessment service for regular threads was
recorded earlier in [5, 7]. However, the proof described here is much shorter and more
elegant. Furthermore, this proof can easily be generalized to the decidability of a risk
assessment service for one-counter threads, which establishes the main result of this
paper.

4.1 Risk Assessment for Regular Threads

Assume a finite linear specification

E = {x = tx | x ∈ Var(E)}.
There are two special actions among the actions of E. First, there is the action risk
representing behavior that poses a security risk. Secondly, there is the action s.ok
with s a focus name and ok a request to a risk assessment service. We call a vari-
able x ∈ Var(E) with tx of the form y � s.ok � z a test state with true-branch y and
false-branch z. We assume that focus(risk) = s. A correct risk assessment service
will reply true to the ok test, if, and only if, risk is not a possible future behav-
ior of the true-branch composed with the service. We start with an example (taken
from [7]).

Example 5 Suppose E is defined by the eight equations below, where the actions a,
b and c do not use focus s. Then, in the regular thread x1 the various s.ok tests are
evaluated as follows:

x1 = x2 � s.ok � x8, (true)

x2 = x3 � a � x4,

x3 = x5 � s.ok � x6, (true)

x4 = x6 � s.ok � x7, (false)

x5 = b ◦ x2,

x6 = risk ◦ x1,

x7 = c ◦ x8,

x8 = S.
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This situation can be illustrated as follows, where the superscript i on states corre-
sponds to the subscript of the defining variable xi of the specification:

Before giving the definition of a risk assessment service, we define the risk states
of a finite linear specification.

Definition 3 The set Risk(E) ⊆ Var(E) of risk states of a finite linear specification
E is defined inductively as the least set satisfying, for all (x = tx) ∈ E,

1. If tx = y � risk � z, then x ∈ Risk(E),
2. If tx = y � s.ok � z, and both y ∈ Risk(E) and z ∈ Risk(E), then x ∈ Risk(E),
3. If tx = y � a � z for a = risk, s.ok, and y ∈ Risk(E) or z ∈ Risk(E), then x ∈

Risk(E).

Membership of Risk(E) is decidable since Var(E) is finite. For instance, for E as
defined in Example 5, Risk(E) = {x6}.

The idea is that in risk states, the possibility of a future risk execution cannot
be avoided by a risk assessment service answering to the ok tests, so that the service
should try to avoid risk states. Before we make this precise we do some preprocessing
on the specification of the thread. We assume that to define the reply function of
the risk assessment service, we can analyze the specification E. For the answer to
a particular ok test, it must then be known which part of the specification is to be
assessed. This is made possible by annotating the ok tests with variables from Var(E).
Let Ea be the specification obtained from E by replacing all equations of the form

x = y � s.ok � z by x = y � s.ok:y � z.

This preprocessing allows us to define the service as a history-based service in the
format defined in Sect. 2.3.4 Having defined this preprocessing step, we immediately
adopt the convention to blur the distinction between E and Ea ; we assume that the
annotation is implicitly visible in a use application.

4In [7], a general risk assessment tool SHRAT (security hazard risk assessment tool) is defined as a more
powerful kind of service that upon a request s.ok loads both the specification and the identity of the state
to be tested. A disadvantage of that approach is that SHRAT does not necessarily commute with other
thread-service applications.
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We now define the risk assessment service S(E) for the specification E as the
service with signature {ok}, or actually with signature {ok:x | x ∈ Var(E)} by the
convention just introduced, and with reply function

F(ν(ok:x)) =
{
true if x ∈ Risk(E),
false otherwise,

for all x ∈ Var(E) (the history ν is never used).
We continue with the property of risk states mentioned above: in risk states possi-

ble future execution of risk cannot be avoided by S(E). First, for thread x, possible
future execution of risk is defined as

risk ∈ actions(x),

where actions(_) is defined for BTA threads by

actions(S) = actions(D) = ∅,

actions(P � a � Q) = {a} ∪ actions(P ) ∪ actions(Q),

and this is extended to BTA∞ threads by

actions((Pn)n∈N) =
⋃

n∈N

actions(Pn).

For example, if E = {x = D, y = x � a � y} then actions(x) = ∅ while actions(y) =
{a}.

Lemma 3 Let E be a finite linear specification. Then

x ∈ Risk(E) implies risk ∈ actions(x /s S(E)).

Proof Easy, following the inductive definition of Risk(E). �

The next theorem states that the service S(E) is a correct risk assessment service
for E, in the sense that its reply to ok:x is true, if, and only if, risk ∈ actions(x /s

S(E)).

Theorem 1 Let E be a finite linear specification. Then S(E) as defined above is a
correct risk assessment service for E.

Proof We must prove that risk ∈ actions(x /s S(E)) if and only if x ∈ Risk(E). The
if-part follows from Lemma 3. For the only-if-part, suppose that risk ∈ actions(x /s

S(E)). Then there must be a trace of x leading to a state where risk can be performed,
corresponding to a sequence

xk, xk−1, . . . , x1 ∈ Var(E)
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with xk = x, k ≥ 1, such that x1 = y � risk � z for some y, z, with the following
property (†): For i = 2, . . . , k, xi = y � a � z in E for some y, z with xi−1 ∈ {y, z},
and a = s.ok implies xi /s S(E) = xi−1 /s S(E).

We now prove by induction on k that xk ∈ Risk(E).
Base case. If k = 1 then xk ∈ Risk(E) because x1 = y � risk � z for some y, z.
Induction step. Let k > 1 and assume that xk−1 ∈ Risk(E). By (†): xk = y � a � z

in E with xk−1 ∈ {y, z}, and a = s.ok implies xk /s S(E) = xk−1 /s S(E). If a = s.ok,
then xk ∈ Risk(E) by definition. If a = s.ok, then xk /s S(E) = xk−1 /s S(E), and
since xk−1 ∈ Risk(E) we know by definition of S(E) that it must be that it answered
false to the s.ok test, and therefore that y ∈ Risk(E) and xk−1 = z. So both y ∈
Risk(E) and z ∈ Risk(E) and therefore by definition of Risk(E) also xk ∈ Risk(E). �

Clearly, the thread T = x1 /s S(E) as defined and depicted in Example 5 satisfies
T = b ◦ T � a � c ◦ S.

4.2 Risk Assessment for One-Counter Threads

We now turn to the construction of a risk assessment service for one-counter threads.
Consider a finite linear specification E and its infinite version EC constructed as in
Sect. 3.1. Assume that distinct foci s and c are used to access the risk assessment
service and the counter service, respectively, and that focus(risk) ∈ {s, c}. For the
definition of a risk assessment service for EC we exploit Lemma 2. First we show
that we can restrict to specifications in which risk can only be performed when the
counter value is zero. To this end we modify E to E′ by replacing each equation of
the form

x = y � risk � z

by the two equations

x = x � c.dec � x′ and x′ = y � risk � z

for some fresh variable x′ for x. Observe that, for any state x(n) of EC in which
risk can be performed, x(n) in E′

C cannot perform risk immediately, but that the
consecutive execution of n + 1 c.dec actions leads to state x′(0) in which risk can
be performed. We restrict, without loss of generality, to finite linear specifications
with the property that risk can only be performed when the counter value is zero: we
assume that E has been modified as just described.

Given such a specification E, it follows from Lemma 2 that for any state x(n) of
EC there is a certain value

Nn = 3 · (4 · |Var(E)|)3 + n

such that any trace to a state in which risk can be performed, has a trace in which the
counter value does not exceed Nn. So, for risk assessment it is sufficient to construct
the finite approximation Appr(Nn,EC ) of the infinite specification EC (see Defini-
tion 2). For this finite linear specification membership of Risk is decidable. In the
remainder of this section we abbreviate Appr(Nn,EC ) to En

C .



578 Theory Comput Syst (2008) 43: 563–582

So, let x ∈ Var(E) be a test state, with x = y � s.ok � z in E. What is the reply to
the test in a state x(n) of EC ? Well, construct En

C , and reply true if and only if y(n)

is not a risk state in this finite specification. We assume as before that the identity
of the true-branch is visible in the test (so we have to reply to a method of the form
ok:y:n), and define the risk assessment service S(EC ) with reply function

F(ν(ok:y:n)) =
{
true if y(n) ∈ Risk(En

C ),
false otherwise,

for all states y(n) of EC .

Theorem 2 Let E be a finite linear specification. Then S(EC ) as defined above is a
correct risk assessment service for EC , that is, for any state x(n) of EC ,

risk ∈ actions(x(n) /s S(EC )) if and only if x(n) ∈ Risk(En
C ).

The proof is similar to the proof for the regular case in Sect. 4.1:

Proof For the if-part: using Lemma 3 we find that

risk ∈ actions(x(n) /s S(En
C ),

and it is straightforward to prove that

actions(x(n) /s S(En
C )) ⊆ actions(x(n) /s S(EC )).

For the only-if-part, suppose that risk ∈ actions(x(n) /s S(EC )). Then there must
be a trace of x(n) leading to a state where risk can be performed, corresponding to a
sequence of states

xk(nk), xk−1(nk−1), . . . , x1(n1)

with k ≥ 1, xk = x, nk = n, x1 = y � risk � z for some y, z, and n1 = 0, with the
following properties:

(†) For i = 2, . . . , k, xi = y � a � z in E for some y, z with xi−1 ∈ {y, z}, and a =
s.ok implies xi(ni) /s S(EC ) = xi−1(ni−1) /s S(EC ).

(‡) By Lemma 2, ni ≤ Nn for i = 1, . . . , k, so that the trace is part of the finite En
C .

We now prove by induction on k that xk(nk) ∈ Risk(En
C ).

Base case. If k = 1 then xk(nk) ∈ Risk(En
C ) because x1 = y � risk � z for some

y, z.
Induction step. Let k > 1 and assume xk−1(nk−1) ∈ Risk(En

C ). By (†) we find that
xk = y � a � z in E with xk−1 ∈ {y, z}, and a = s.ok implies xk(nk) /s S(EC ) =
xk−1(nk−1) /s S(EC ). If a = s.ok, then xk(nk) ∈ Risk(En

C ) by definition. If a = s.ok,
then xk(nk) /s S(EC ) = xk−1(nk−1) /s S(EC ), and nk = nk−1. Since xk−1(nk−1) ∈
Risk(En

C ) we know by definition of S(EC ) and (‡) that it must be that it answered
false to the s.ok test, and therefore that y(nk) ∈ Risk(En

C ) and xk−1 = z. So both
y(nk) ∈ Risk(En

C ) and z(nk) ∈ Risk(En
C ), and therefore xk(nk) ∈ Risk(En

C ) by defini-
tion of Risk(En

C ). �
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Our ultimate goal is to prove the decidability and correctness of a risk assessment
service for any one-counter thread, given its finite linear specification E and counter
value C(n). Using identity (1), i.e.,

x /c C(n) = x(n) /c C(n) for all x ∈ Var(E) and n ∈ N,

where x(n) is defined by the infinite linear specification EC , we can now reason as
follows: suppose (x = y � s.ok � z) ∈ E. By Theorem 2, the risk assessment service
S(EC ) provides the correct reply to x(n) as defined by EC . It follows that this reply
is also correct for x(n) /c C(n), because the counter actions in EC equations occur as
action prefix only, and thus for x /c C(n) as defined by E.

We conclude that risk assessment for a one-counter thread x /c C(n) can be made
using its infinite specification EC , and is hence by Theorem 2 decidable and correct.

5 Reachability Results for One-Counter Threads

Let E be a finite linear specification and x ∈ Var(E). In Sect. 3 we have defined action
relations and traces for the states x(n) of EC . In this section we give corresponding
definitions for threads with states of the form x /c C(n) and present the corresponding
reachability results. We start with the action relations (note the different arrow heads).

For (x = y � a � z) ∈ E, with focus(a) = c,

x /c C(n)
a:true→ y /c C(n) and x /c C(n)

a:false→ z /c C(n).

In order to model the interactions with the counter we use an action relation with the
special label ι, so for (x = y � c.inc � z) ∈ E,

x /c C(n)
ι→ y /c C(n + 1),

and for (x = y � c.dec � z) ∈ E,

x /c C(0)
ι→ z /c C(0) and x /c C(n + 1)

ι→ y /c C(n).

A trace r : x /c C(n)
σ→ y /c C(n′) is a sequence

x0 /c C(n0)
α0→ x1 /c C(n1)

α1→ ·· · αk−1→ xk /c C(nk),

with x = x0, n = n0, y = xk , n′ = nk , and σ = α0 . . . αk−1 with the αi ranging over
{ι} ∪ {a:true, a:false | a ∈ A}.

For actions not using focus c we find that

x(n)
a:b
� y(n) if and only if x /c C(n)

a:b→ y /c C(n),

while for interactions with the counter,

x(n)
c.inc:true

� y(n + 1) if and only if x /c C(n)
ι→ y /c C(n + 1),
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x(n + 1)
c.dec:true

� y(n) if and only if x /c C(n + 1)
ι→ y /c C(n),

x(0)
c.dec:false

� y(0) if and only if x /c C(0)
ι→ y /c C(0).

This correspondence between the action relations of EC and those defined for states

of the form x /c C(n) extends to traces: any trace x(n)
σ

� y(n′) of EC corresponds to

a trace x /c C(n)
σ ′→ y /c C(n′) where σ ′ is obtained from σ by renaming the polarized

counter actions to ι.
The following two theorems for one-counter threads now follow as corollaries of

Lemma 2.

Theorem 3 Let E be a finite linear specification with x, y ∈ Var(E). Then, for any
n,n′ ∈ N it is decidable whether the state y /c C(n′) can be reached from x /c C(n).

Proof Consider the infinite linear specification EC as defined by Definition 1. Using
identity (1), we find that the state y /c C(n′) is reachable from x /c C(n) if, and only
if, y(n′) is reachable from x(n) in EC . According to Lemma 2 the latter is the case if
and only if it is so in Appr(Nn,n′ ,EC ), the finite approximation of EC with

Nn,n′ = 3 · (4 · |Var(E)|)3 + max(n,n′).

This approximation is a regular thread, and reachability is decidable for regular
threads (simply redefine the equation for y(n′) and decide whether equality is pre-
served), so the result follows immediately. �

Theorem 4 Let E be a finite linear specification. If r : x /c C(n)
σ→ y /c C(n′) is a

trace, then there is a trace

r ′ : x /c C(n)
ρ→ y /c C(n′)

such that labels(σ ) = labels(ρ), and m ≤ 3 · (4 · |Var(E)|)3 +max(n,n′) for any state
z /c C(m) in r ′.

We end this short section with a comment on the traces just defined. The action
relation ι reflects the effect of thread-service composition: an interaction with the
counter results in a single, discrete step. We use this as an auxiliary notion providing
a simple definition of traces. Note however, that the equations that define thread-
service composition (in Sect. 2.3) imply that the interaction between a thread and a
service should not be visible (or ‘observable’). On the level of traces, such invisibil-
ity can be obtained by taking together the source and target states of the ι steps, and
consequently leaving ι out of the traces. A formal definition can easily be given. We
then find, for a one-counter thread for which all actions are requests to the counter,
that all traces collapse: for example, x /c C(0) defined by x = c.inc◦x has no observ-
able traces.5 For the one-counter thread defined in Example 2, we find that it has an

5Cf. Example 3 and the remark about the identification of livelock and deadlock following this example.
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observable trace

x1 /c C(0)
ak→ x1 /c C(0)

for any k > 0. We further note that a complete account of the observable traces of
threads should include the difference between termination and inaction, so that S and
D are distinguished (for example by a special action relation that signals termination).

6 Conclusions

Risk assessment as investigated in this paper has two interesting characteristics. First,
it offers an alternative to Cohen’s seminal 1984-result on the impossibility of virus
detection [8]. The crucial twist in our approach is that we use a test that only estab-
lishes whether its true-branch is risk-free and that does not evaluate its false-branch,
thus resisting arguments that are based on self-reference (this form of risk assessment
was first proposed in [5]). Secondly, exploiting a result of Rosier and Yen [13] we ex-
tended the class of threads for which risk assessment is decidable to the one-counter
threads.

We expect that risk assessment is also decidable for pushdown threads (i.e., regular
threads that may use a stack), but our proof does not generalize to this case (some
partial results can be found in [7]). The essential problem is that control decisions
depending on a stack over at least two elements can occur at any stack contents (e.g.,
a test on the identity of the top-element), while control decisions in the case of a
counter can take place only if the counter has value 0. So, the decidability of a service
for risk assessment of pushdown threads (or any similar form of action-forecasting)
is still an open question.

Finally, apart from the decidability of risk assessment, the one-counter threads
form a noteworthy class of threads. We conclude with a summary of some typical
properties of this class of threads:

1. Equivalence is decidable (shown in [6]),
2. Inclusion is undecidable (see also [6]),
3. Reachability is decidable (Theorem 3 in the present paper), and
4. Reachability is preserved under bounded counter values and polarized action la-

bels (Theorem 4 in the present paper).
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