25 research outputs found
Lack of high BMI-related features in adipocytes and inflammatory cells in the infrapatellar fat pad (IFP)
BACKGROUND: Obesity is associated with the development and progression of osteoarthritis (OA). Although the infrapatellar fat pad (IFP) could be involved in this association, due to its intracapsular localization in the knee joint, there is currently little known about the effect of obesity on the IFP. Therefore, we investigated cellular and molecular body mass index (BMI)-related features in the IFP of OA patients. METHODS: Patients with knee OA (N = 155, 68% women, mean age 65 years, mean (SD) BMI 29.9 kg/m2 (5.7)) were recruited: IFP volume was determined by magnetic resonance imaging in 79 patients with knee OA, while IFPs and subcutaneous adipose tissue (SCAT) were obtained from 106 patients undergoing arthroplasty. Crown-like structures (CLS) were determined using immunohistochemical analysis. Adipocyte size was determined by light microscopy and histological analysis. Stromal vascular fraction (SVF) cells were characterized by flow cytometry. RESULTS: IFP volume (mean (SD) 23.6 (5.4) mm(3)) was associated with height, but not with BMI or other obesity-related features. Likewise, volume and size of IFP adipocytes (mean 271 pl, mean 1933 μm) was not correlated with BMI. Few CLS were observed in the IFP, with no differences between overweight/obese and lean individuals. Moreover, high BMI was not associated with higher SVF immune cell numbers in the IFP, nor with changes in their phenotype. No BMI-associated molecular differences were observed, besides an increase in TNFα expression with high BMI. Macrophages in the IFP were mostly pro-inflammatory, producing IL-6 and TNFα, but little IL-10. Interestingly, however, CD206 and CD163 were associated with an anti-inflammatory phenotype, were the most abundantly expressed surface markers on macrophages (81% and 41%, respectively) and CD163(+) macrophages had a more activated and pro-inflammatory phenotype than their CD163(-) counterparts. CONCLUSIONS: BMI-related features usually observed in SCAT and visceral adipose tissue could not be detected in the IFP of OA patients, a fat depot implicated in OA pathogenesis
Stimulation of Fibrotic Processes by the Infrapatellar Fat Pad in Cultured Synoviocytes From Patients With Osteoarthritis: A Possible Role for Prostaglandin F-2
Objective: Stiffening of the joint is a feature of knee osteoarthritis (OA) that can be caused by fibrosis of the synovium. The infrapatellar fat pad (IPFP) present in the knee joint produces immune-modulatory and angiogenic factors. The goal of the present study was to investigate whether the IPFP can influence fibrotic processes in synovial fibroblasts, and to determine the role of transforming growth factor β (TGFβ) and prostaglandin F2α (PGF2α ) in these processes. Methods: Batches of fat-conditioned medium (FCM) were made by culturing pieces of IPFP obtained from the knees of 13 patients with OA. Human OA fibroblast-like synoviocytes (FLS) (from passage 3) were cultured in FCM with or without inhibitors of TGFβ/activin receptor-like kinase 5 or PGF2α for 4 days. The FLS were analyzed for production of collagen and expression of the gene for procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2 (PLOD2; encoding lysyl hydroxylase 2b, an enzyme involved in collagen crosslinking) as well as the genes encoding α-smooth muscle actin and type I collagen α1 chain. In parallel, proliferation and migration of the synoviocytes were analyzed. Results: Collagen production and PLOD2 gene expression by the FLS were increased 1.8-fold (P < 0.05) and 6.0-fold (P < 0.01), respectively, in the presence of FCM, relative to control cultures without FCM. Moreover, the migration and proliferation of synoviocytes were stimulated by FCM. Collagen production was positively associated with PGF2α levels in the FCM (R = 0.89, P < 0.05), and inhibition of PGF2α levels reduced the extent of FCM-induced collagen production and PLOD2 expression. Inhibition of TGFβ signaling had no effect on the profibrotic changes. Conclusion: These results indicate that the IPFP can contribute to the development of synovial fibrosis in the knee joint by increasing collagen production, PLOD2 expression, cell proliferation, and cell migration. In addition, whereas the findings showed that TGFβ is not involved, the more recently discovered profibrotic factor PGF2α appears to be partially involved in the regulation of profibrotic changes
Cytokine production by infrapatellar fat pad can be stimulated by interleukin 1 beta and inhibited by peroxisome proliferator activated receptor alpha agonist
Background Infrapatellar fat pad (IPFP) might be involved in osteoarthritis (OA) by production of cytokines. It was hypothesised that production of cytokines is sensitive to environmental conditions. Objectives To evaluate cytokine production by IPFP in response to interleukin (IL)1b and investigate the ability to modulate this response with an agonist for peroxisome proliferator activated receptor alpha (PPAR alpha), which is also activated by lipid-lowering drugs such as fibrates. Methods Cytokine secretion of IPFP was analysed in the medium of explant cultures of 29 osteoarthritic patients. IPFP (five donors) and synovium (six donors) were cultured with IL-1b and PPAR alpha agonist Wy14643. Gene expression of IL-1b, monocyte chemoattractant protein (MCP1), (IL-6, tumour necrosis factor (TNF)alpha, leptin, vascular endothelial growth factor (VEGF), IL-10, prostaglandin-endoperoxide synthase (PTGS)2 and release of TNF alpha, MCP1 and prostaglandin E-2 were compared with un Results IPFP released large amounts of inflammatory cytokines, adipokines and growth factors. IL-1b increased gene expression of PTGS2, TNF alpha, IL-1b, IL-6 and VEGF and increased TNF alpha release in IPFP. MCP1, leptin, IL-10 gene expression and MCP1, leptin and PGE(2) release did not increase significantly. Synovium responded to IL-1b similarly to IPFP, except for VEGF gene expression. Wy14643 decreased gene expression of PTGS2, IL-1b, TNF alpha, MCP1, VEGF and leptin in IPFP explants and IL Conclusion IPFP is an active tissue within the joint. IPFP cytokine production is increased by IL-1b and decreased by a PPAR alpha agonist. The effects were similar to effects seen in synovium. Fibrates may represent a potential disease-modifying drug for OA by modulating inflammatory properties of IPFP and synovium
Contribution of collagen network features to functional properties of engineered cartilage
Background: Damage to articular cartilage is one of the features of osteoarthritis (OA). Cartilage damage is characterised by a net loss of collagen and proteoglycans. The collagen network is considered highly important for cartilage function but little is known about processes that control composition and function of the cartilage collagen network in cartilage tissue engineering. Therefore, our aim was to study the contribution of collagen amount and number of crosslinks on the functionality of newly formed matrix during cartilage repair. Methods: Bovine articular chondrocytes were cultured in alginate beads. Collagen network formation was modulated using the crosslink inhibitor P-aminopropionitrile (BAPN; 0.25 mM). Constructs were cultured for 10 weeks with/without BAPN or for 5 weeks with BAPN followed by 5 weeks without. Collagen deposition, number of crosslinks and susceptibility to degradation by matrix metalloproteinase-1 (MMP-1) were examined. Mechanical properties of the constructs were determined by unconfined compression. Results: BAPN for 5 weeks increased collagen deposition accompanied by increased construct stiffness, despite the absence of crosslinks. BAPN for 10 weeks further increased collagen amounts. Absence of collagen crosslinks did not affect stiffness but ability to hold water was lower and susceptibility to MMP-mediated degradation was increased. Removal of BAPN after 5 weeks increased collagen amounts, allowed crosslink formation and increased stiffness. Discussion: This study demonstrates that both collagen amounts and its proper crosslinking are important for a functional cartilage matrix. Even in conditions with elevated collagen deposition, crosslinks are needed to provide matrix stiffness. Crosslinks also contribute to the ability to hold water and to the resistance against degradation by MMP-1. (C) 2007 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved
Metabolic Profiling Reveals Differences in Concentrations of Oxylipins and Fatty Acids Secreted by the Infrapatellar Fat Pad of Donors With End-Stage Osteoarthritis and Normal Donors
ObjectiveThe infrapatellar fat pad (IPFP) in the knee joint is hypothesized to contribute to osteoarthritis (OA) development by the IFPF possibly by influencing inflammatory processes. Oxylipins are essential mediators in the inflammatory process. We undertook this study to investigate secretion by the IFPF of fatty acids and oxylipins derived from those fatty acids. MethodsIPFP explants from 13 OA donors undergoing joint replacement surgery and from 10 normal donors postmortem were cultured for 24 hours, and supernatants (fat-conditioned medium [FCM]) were collected. Liquid chromatography tandem mass spectrometry detected fatty acids and oxylipins in FCM samples. Univariate and multivariate (partial least-squares discriminant analysis [PLS-DA]) analyses were performed, followed by pathway analysis. To validate these outcomes, a second set of OA FCM samples ResultsTwenty-nine oxylipins and fatty acids could be detected in FCM. Univariate analysis showed no differences between normal donor and OA donor FCM; however, PLS-DA revealed an oxylipin/fatty acid profile consisting of 14 mediators associated with OA (accuracy rate 72%). The most important contributors to the model were lipoxin A(4) (decreased), thromboxane B-2 (increased), and arachidonic acid (increased). The statistical model predicted 64% of the second set of OA FCM samples correctly. Pat ConclusionThe IPFP secretes multiple and different oxylipins, and a subset of these oxylipins provides a distinctive profile for OA donors. It is likely that the observed changes are regulated by the OA process rather than being a consequence of basal metabolism changes, as an increase in fatty acid levels was not necessarily associated with an increase in oxylipins derived from that fatty acid