285 research outputs found

    Congenital subaortic stenosis by accessory mitral valve tissue, recognition and management

    Get PDF
    Accessory mitral valve tissue as the single cause for left ventricular outflow tract obstruction is a very rare cardiac malformation in normally connected hearts. We report a case in which this condition was present as single cause for left ventricular outflow tract obstruction. The surgical technique is described and a review of the literature presente

    Assessment of coronary sinus anatomy between normal and insufficient mitral valves by multi-slice computertomography for mitral annuloplasty device implantation

    Get PDF
    Introduction: Latest techniques enable positioning of devices into the coronary sinus (CS) for mitral valve (MV) annuloplasty. We evaluate the feasibility of non-invasive assessment to determine CS anatomy and its relation to MV annulus and coronary arteries by multi-slice CT (MSCT) in normal and insufficient MV. Methods: Fifty patients (33 males, 17 females, age 67±11 years) were studied retrospectively by 64-MSCT scans for anatomical criteria regarding CS and its relation to MV annulus and circumflex artery (CX). We included 24 patients with severe mitral insufficiency and 26 with no MV disease. Diameter of MV, of proximal and distal ostium of CS, length and volume of CS, angle between anterior interventricular vein (AIV) and CS, caliber change of CX before, under/over and after CS were analysed. Different anatomical correlations were demonstrated: distance of MV annulus to CS, CX to CS. Results: Diameter of proximal CS ostium was significantly larger in insufficient MV compared to normal MV (11±2.8mm vs 9.9±2.5mm; p<0.024). CS was significantly longer in patients with insufficient MV (125.4±17mm vs 108.9±18mm; p<0.003) with also significant differences in volume of CS (p<0.039). Significant difference in annulus diameter, 46.1±6mm (insufficient MV) versus 39.5±7.5mm, p<0.004 was observed. Angle CS-AIV was 103.5±29° (range 52°-144°) in insufficient valves versus 118.2±24.5° (range 73°-166°) in normal valves with a tendency to higher angles in normal valves (p=0.06). Distance of MV annulus to CS measured 16±4.1/14.2±3.6mm (insufficient/normal MV) without significant difference between groups. In 15 patients CX ran under CS. Eighty-four percent of these patients (13/15) show a decrease in CS caliber in the area of intersection. In 14 patients CS ran over and in one patient the diameter of the CS at intersecting region was smaller. In 16 patients no direct point of contact was visible, in five patients CX to CS positioning was not evaluable. Conclusion: There is a significant anatomic difference between normal and insufficient MV, which might be the basis for any interventional approaches through the CS. Exact measurements of all structures and its anatomic correlations are possible with MSCT, which allows pre-interventional plannin

    Living patches engineered from human umbilical cord derived fibroblasts and endothelial progenitor cells

    Get PDF
    Objective: A major shortcoming in contemporary congenital heart surgery is the lack of viable replacement materials with the capacity of growth and regeneration. Here we focused on living autologous patches engineered from human umbilical cord derived fibroblasts and endothelial progenitor cells (EPCs) as a ready-to-use cell source for paediatric cardiovascular tissue engineering. Methods: EPCs were isolated from 20ml fresh umbilical cord blood by density gradient centrifugation and myofibroblasts were harvested from umbilical cord tissue. Cells were differentiated and expanded in vitro using nutrient media containing growth factors. Before seeding, cell-phenotypes were assessed by immuno-histochemistry. Biodegradable patches fabricated from synthetic polymers (PGA/P4HB) were seeded with myofibroblasts followed by endothelialization with EPCs. All patches were cultured in a perfusion bioreactor. A subgroup of patches was additionally stimulated by cyclic strain. Analysis of the neo-tissues comprised histology, immuno-histochemistry, extracellular matrix (ECM) analysis and biomechanical testing. Results: Endothelial phenotypes of EPCs before seeding were confirmed by Ac-Dil-LDL, CD 31, von-Willebrand-Factor and eNOS staining. Histology of the seeded patches demonstrated layered viable tissue formation in all samples. The cells in the newly formed tissues expressed myofibroblast markers, such as desmin and alpha-SMA. The EPCs derived neo-endothelia showed constant endothelial phenotypes (CD 31, vWF). major constituents of ECM such as collagen and proteoglycans were biochemically detected. Stress-strain properties of the patches showed features of native-analogous tissues. Conclusions: Living tissue engineered patches can be successfully generated from human umbilical cord derived myofibroblasts and EPCs. This new cell source may enable the tissue engineering of versatile, living, autologous replacement materials for congenital cardiac intervention

    Computational simulation of intracoronary flow based on real coronary geometry

    Get PDF
    Objective: To assess the feasibility of computationally simulating intracoronary blood flow based on real coronary artery geometry and to graphically depict various mechanical characteristics of this flow. Methods: Explanted fresh pig hearts were fixed using a continuous perfusion of 4% formaldehyde at physiological pressures. Omnipaque dye added to lead rubber solution was titrated to an optimum proportion of 1:25, to cast the coronary arterial tree. The heart was stabilized in a phantom model so as to suspend the base and the apex without causing external deformation. High resolution computerized tomography scans of this model were utilized to reconstruct the three-dimensional coronary artery geometry, which in turn was used to generate several volumetric tetrahedral meshes of sufficient density needed for numerical accuracy. The transient equations of momentum and mass conservation were numerically solved by employing methods of computational fluid dynamics under realistic pulsatile inflow boundary conditions. Results: The simulations have yielded graphic distributions of intracoronary flow stream lines, static pressure drop, wall shear stress, bifurcation mass flow ratios and velocity profiles. The variability of these quantities within the cardiac cycle has been investigated at a temporal resolution of 1/100th of a second and a spatial resolution of about 10 μm. The areas of amplified variations in wall shear stress, mostly evident in the neighborhoods of arterial branching, seem to correlate well with clinically observed increased atherogenesis. The intracoronary flow lines showed stasis and extreme vorticity during the phase of minimum coronary flow in contrast to streamlined undisturbed flow during the phase of maximum flow. Conclusions: Computational tools of this kind along with a state-of-the-art multislice computerized tomography or magnetic resonance-based non-invasive coronary imaging, could enable realistic, repetitive, non-invasive and multidimensional quantifications of the effects of stenosis on distal hemodynamics, and thus help in precise surgical/interventional planning. It could also add insights into coronary and bypass graft atherogenesi

    Old and new results for superenergy tensors from dimensionally dependent tensor identities

    Full text link
    It is known that some results for spinors, and in particular for superenergy spinors, are much less transparent and require a lot more effort to establish, when considered from the tensor viewpoint. In this paper we demonstrate how the use of dimensionally dependent tensor identities enables us to derive a number of 4-dimensional identities by straightforward tensor methods in a signature independent manner. In particular, we consider the quadratic identity for the Bel-Robinson tensor TabcxTabcy=δxyTabcdTabcd/4{\cal T}_{abcx}{\cal T}^{abcy} = \delta_x^y {\cal T}_{abcd}{\cal T}^{abcd}/4 and also the new conservation laws for the Chevreton tensor, both of which have been obtained by spinor means; both of these results are rederived by {\it tensor} means for 4-dimensional spaces of any signature, using dimensionally dependent identities, and also we are able to conclude that there are no {\it direct} higher dimensional analogues. In addition we demonstrate a simple way to show non-existense of such identities via counter examples; in particular we show that there is no non-trivial Bel tensor analogue of this simple Bel-Robinson tensor quadratic identity. On the other hand, as a sample of the power of generalising dimensionally dependent tensor identities from four to higher dimensions, we show that the symmetry structure, trace-free and divergence-free nature of the four dimensional Bel-Robinson tensor does have an analogue for a class of tensors in higher dimensions.Comment: 18 pages; TeX fil

    Human umbilical cord cells for cardiovascular tissue engineering: a comparative study

    Get PDF
    Objective: Tissue engineering of viable, autologous cardiovascular replacements with the potential to grow, repair and remodel represents an attractive approach to overcome the shortcomings of available replacements for the repair of congenital cardiac defects. Currently, vascular myofibroblast cells represent an established cell source for cardiovascular tissue engineering. Cell isolation requires the invasive harvesting of venous or arterial vessel segments prior to scaffold seeding, a technique which may not be preferable, especially in pediatric patients. This study evaluates cells isolated from human umbilical cord artery, umbilical cord vein and whole cord as alternative autologous cell sources for cardiovascular tissue engineering. Methods: Cells were isolated from human umbilical cord artery (UCA), umbilical cord vein (UCV), whole umbilical cord (UCC) and saphenous vein segments (VC), and were expanded in culture. All three expanded cell groups were seeded on bioabsorbable copolymer strips and grown in vitro for 28 days. Isolated cells were characterized by flow cytometry, histology, immunohistochemistry, proliferation assays and compared to VC. Morphological analysis of the seeded polymer strips included histology, immunohistochemistry, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and uniaxial stress testing. Results: UCA, UCV and UCC demonstrated excellent cell growth properties comparable to VC. Following isolation, all three cell groups showed myofibroblast-like morphology and characteristics by staining positive for α-smooth muscle actin (ASMA) and vimentin. Histology and immunohistochemistry of seeded polymers showed good tissue and extracellular matrix formation containing collagen I, III and elastin. TEM showed viable myofibroblasts and the deposition of collagen fibrils and progessive growing tissue formation, with a confluent surface, was observed in SEM. No difference was found among the mechanical properties of UCA, UCV, UCC and VC tissue engineered constructs. Conclusions: Tissue engineering of cardiovascular constructs by using UCA, UCV and UCC is feasible in an in vitro environment. Cell growth, morphology, characteristics and tissue formation were comparable between UCA, UCV, UCC and VC. UCC represent an attractive, readily available autologous cell source for cardiovascular tissue engineering offering the additional benefits of utilizing juvenile cells and avoiding the invasive harvesting of intact vascular structure

    Tissue engineering in cardiovascular surgery: MTT, a rapid and reliable quantitative method to assess the optimal human cell seeding on polymeric meshes

    Get PDF
    Objective: Currently used valve substitutes for valve replacement have certain disadvantages that limit their long-term benefits such as poor durability, risks of infection, thromboebolism or rejection. A tissue engineered autologous valve composed of living tissue is expected to overcome these shortcomings with natural existing biological mechanisms for growth, repair, remodeling and development. The aim of the study was to improve cell seeding methods for developing tissue-engineered valve tissue. Methods: Human aortic myofibroblasts were seeded on polyglycolic acid (PGA) meshes. Cell attachment and growth of myofibroblasts on the PGA scaffolds with different seeding intervals were compared to determine an optimal seeding interval. In addition, scanning electron microscopy study of the seeded meshes was also performed to document tissue development. Results: There was a direct correlation between cell numbers assessed by direct counting and MTT(3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltertra-zolium bromide) assay. Both attach rate and cell growth seeded on meshes with long intervals (24 and 36 h) were significantly higher than those seeded with short intervals (2 and 12 h) (P≪0.01), there was no significant difference between 24- and 36-h seeding interval. Scanning electron microscopy also documented more cell attachment with long seeding intervals resulting in a more solid tissue like structure. Conclusion: It is feasible to use human aortic myofibroblasts to develop a new functional tissue in vitro. Twenty-four hours is an optimal seeding interval for seeding human aortic myofibroblasts on PGA scaffolds and MTT test is a rapid and reliable quantitative method to assess the optimal human cell seeding on polymeric meshe

    A new source for cardiovascular tissue engineering: human bone marrow stromal cells

    Get PDF
    Objective: Vascular-derived cells represent an established cell source for tissue engineering of cardiovascular constructs. Previously, cell isolation was performed by harvesting of vascular structures prior to scaffold seeding. Marrow stromal cells (MSC) demonstrate the ability to differentiate into multiple mesenchymal cell lineages and would offer an alternative cell source for tissue engineering involving a less invasive harvesting technique. We studied the feasibility of using MSC as an alternative cell source for cardiovascular tissue engineering. Methods: Human MSC were isolated from bone marrow and expanded in culture. Subsequently MSC were seeded on bioabsorbable polymers and grown in vitro. Cultivated cells and seeded polymers were studied for cell characterization and tissue formation including extracellular matrix production. Applied methods comprised flow cytometry, histology, immunohistochemistry, transmission (TEM) and scanning electron microscopy (SEM), and biochemical assays. Results: Isolated MSC demonstrated fibroblast-like morphology. Phenotype analysis revealed positive signals for alpha-smooth muscle actin and vimentin. Histology and SEM of seeded polymers showed layered tissue formation. TEM demonstrated formation of extracellular matrix with deposition of collagen fibrils. Matrix protein analysis showed production of collagen I and III. In comparison to vascular-derived cell constructs quantitative analysis demonstrated comparable amounts of extracellular matrix proteins in the tissue engineered constructs. Conclusions: Isolated MSC demonstrated myofibroblast-like characteristics. Tissue formation on bioabsorbable scaffolds was feasible with extracellular matrix production comparable to vascular-cell derived tissue engineered constructs. It appears that MSC represent a promising cell source for cardiovascular tissue engineerin

    Fibrin gel - advantages of a new scaffold in cardiovascular tissue engineering

    Get PDF
    Objective: The field of tissue engineering deals with the creation of tissue structures based on patient cells. The scaffold plays a central role in the creation of 3-D structures in cardiovascular tissue engineering like small vessels or heart valve prosthesis. An ideal scaffold should have tissue-like mechanical properties and a complete immunologic integrity. As an alternative scaffold the use of fibrin gel was investigated. Methods: Preliminary, the degradation of the fibrin gel was controlled by the supplementation of aprotinin to the culture medium. To prevent tissue from shrinking a mechanical fixation of the gel with 3-D microstructure culture plates and a chemical fixation with poly-l-lysine in different fixation techniques were studied. The thickness of the gel layer was changed from 1 to 3 mm. The tissue development was analysed by light, transmission and scanning electron microscopy. Collagen production was detected by the measurement of hydroxyproline. Injection molding techniques were designed for the formation of complex 3-D tissue structures. Results: The best tissue development was observed at an aprotinin concentration of 20 μg per cc culture medium. The chemical border fixation of the gel by poly-l-lysine showed the best tissue development. Up to a thickness of 3 mm no nutrition problems were observed in the light and transmission electron microscopy. The molding of a simplified valve conduit was possible by the newly developed molding technique. Conclusion: Fibrin gel combines a number of important properties of an ideal scaffold. It can be produced as a complete autologous scaffold. It is moldable and degradation is controllable by the use of aprotini
    corecore