197 research outputs found

    Stent-Retriever Thrombectomy: Impact on the Future of Interventional Stroke Treatment

    Get PDF
    Endovascular treatment for acute ischemic stroke has evolved in the past years. The current development of stent-retriever thrombectomy is a landmark in the clinical treatment and study results of acute ischemic stroke. This review summarizes the recent study results, elucidates the shortcomings of endovascular stroke treatment, and takes the opportunity for an outlook on the role of stroke interventions in the future

    Auditory discrimination improvement predicts awakening of postanoxic comatose patients treated with targeted temperature management at 36°C.

    Get PDF
    Outcome prognostication in postanoxic comatose patients is more accurate in predicting poor than good recovery. Using electroencephalography recordings in patients treated with targeted temperature management at 33°C (TTM 33), we have previously shown that improvement in auditory discrimination over the first days of coma predicted awakening. Given the increased application of a 36°C temperature target (TTM 36), here we aimed at validating the predictive value of auditory discrimination in the TTM 36 setting. In this prospective multicenter study, we analyzed the EEG responses to auditory stimuli from 60 consecutive patients from the first and second coma day. A semiautomatic decoding analysis was applied to single patient data to quantify discrimination performance between frequently repeated and deviant sounds. The decoding change from the first to second day was used for predicting patient outcome. We observed an increase in auditory discrimination in 25 out of 60 patients. Among them, 17 awoke from coma (68% positive predictive value; 95% confidence interval: 0.46-0.85). By excluding patients with electroencephalographic epileptiform features, 15 of 18 exhibited improvement in auditory discrimination (83% positive predictive value; 95% confidence interval: 0.59-0.96). Specificity of good outcome prediction increased after adding auditory discrimination to EEG reactivity. These results suggest that tracking of auditory discrimination over time is informative of good recovery independent of the temperature target. This quantitative test provides complementary information to existing clinical tools by identifying patients with high chances of recovery and encouraging the maintenance of life support

    Climate Scenarios for Switzerland CH2018 – Approach and Implications

    Get PDF
    To make sound decisions in the face of climate change, government agencies, policymakers and private stakeholders require suitable climate information on local to regional scales. In Switzerland, the development of climate change scenarios is strongly linked to the climate adaptation strategy of the Confederation. The current climate scenarios for Switzerland CH2018 - released in form of six user-oriented products - were the result of an intensive collaboration between academia and administration under the umbrella of the National Centre for Climate Services (NCCS), accounting for user needs and stakeholder dialogues from the beginning. A rigorous scientific concept ensured consistency throughout the various analysis steps of the EURO-CORDEX projections and a common procedure on how to extract robust results and deal with associated uncertainties. The main results show that Switzerland’s climate will face dry summers, heavy precipitation, more hot days and snow-scarce winters. Approximately half of these changes could be alleviated by mid-century through strong global mitigation efforts. A comprehensive communication concept ensured that the results were rolled out and distilled in specific user-oriented communication measures to increase their uptake and to make them actionable. A narrative approach with four fictitious persons was used to communicate the key messages to the general public. Three years after the release, the climate scenarios have proven to be an indispensable information basis for users in climate adaptation and for downstream applications. Potential for extensions and updates has been identified since then and will shape the concept and planning of the next scenario generation in Switzerland

    EEG for good outcome prediction after cardiac arrest: a multicentre cohort study.

    Get PDF
    AIM Assess the prognostic ability of a non-highly malignant and reactive EEG to predict good outcome after cardiac arrest (CA). METHODS Prospective observational multicentre substudy of the "Targeted Hypothermia versus Targeted Normothermia after Out-of-hospital Cardiac Arrest Trial", also known as the TTM2-trial. Presence or absence of highly malignant EEG patterns and EEG reactivity to external stimuli were prospectively assessed and reported by the trial sites. Highly malignant patterns were defined as burst-suppression or suppression with or without superimposed periodic discharges. Multimodal prognostication was performed 96 hours after CA. Good outcome at 6 months was defined as a modified Rankin Scale score of 0-3. RESULTS 873 comatose patients at 59 sites had an EEG assessment during the hospital stay. Of these, 283 (32%) had good outcome. EEG was recorded at a median of 69 hours (IQR 47-91) after CA. Absence of highly malignant EEG patterns was seen in 543 patients of whom 255 (29% of the cohort) had preserved EEG reactivity. A non-highly malignant and reactive EEG had 56% (CI 50-61) sensitivity and 83% (CI 80-86) specificity to predict good outcome. Presence of EEG reactivity contributed (p<0.001) to the specificity of EEG to predict good outcome compared to only assessing background pattern without taking reactivity into account. CONCLUSION Nearly one-third of comatose patients resuscitated after CA had a non-highly malignant and reactive EEG that was associated with a good long-term outcome. Reactivity testing should be routinely performed since preserved EEG reactivity contributed to prognostic performance

    Somatosensory and auditory deviance detection for outcome prediction during postanoxic coma.

    Get PDF
    Prominent research in patients with disorders of consciousness investigated the electrophysiological correlates of auditory deviance detection as a marker of consciousness recovery. Here, we extend previous studies by investigating whether somatosensory deviance detection provides an added value for outcome prediction in postanoxic comatose patients. Electroencephalography responses to frequent and rare stimuli were obtained from 66 patients on the first and second day after coma onset. Multivariate decoding analysis revealed an above chance-level auditory discrimination in 25 patients on the first day and in 31 patients on the second day. Tactile discrimination was significant in 16 patients on the first day and in 23 patients on the second day. Single-day sensory discrimination was unrelated to patients' outcome in both modalities. However, improvement of auditory discrimination from first to the second day was predictive of good outcome with a positive predictive power (PPV) of 0.73 (CI = 0.52-0.88). Analyses considering the improvement of tactile, auditory and tactile, or either auditory or tactile discrimination showed no significant prediction of good outcome (PPVs = 0.58-0.68). Our results show that in the acute phase of coma deviance detection is largely preserved for both auditory and tactile modalities. However, we found no evidence for an added value of somatosensory to auditory deviance detection function for coma-outcome prediction

    NeuroML: A Language for Describing Data Driven Models of Neurons and Networks with a High Degree of Biological Detail

    Get PDF
    Biologically detailed single neuron and network models are important for understanding how ion channels, synapses and anatomical connectivity underlie the complex electrical behavior of the brain. While neuronal simulators such as NEURON, GENESIS, MOOSE, NEST, and PSICS facilitate the development of these data-driven neuronal models, the specialized languages they employ are generally not interoperable, limiting model accessibility and preventing reuse of model components and cross-simulator validation. To overcome these problems we have used an Open Source software approach to develop NeuroML, a neuronal model description language based on XML (Extensible Markup Language). This enables these detailed models and their components to be defined in a standalone form, allowing them to be used across multiple simulators and archived in a standardized format. Here we describe the structure of NeuroML and demonstrate its scope by converting into NeuroML models of a number of different voltage- and ligand-gated conductances, models of electrical coupling, synaptic transmission and short-term plasticity, together with morphologically detailed models of individual neurons. We have also used these NeuroML-based components to develop an highly detailed cortical network model. NeuroML-based model descriptions were validated by demonstrating similar model behavior across five independently developed simulators. Although our results confirm that simulations run on different simulators converge, they reveal limits to model interoperability, by showing that for some models convergence only occurs at high levels of spatial and temporal discretisation, when the computational overhead is high. Our development of NeuroML as a common description language for biophysically detailed neuronal and network models enables interoperability across multiple simulation environments, thereby improving model transparency, accessibility and reuse in computational neuroscience
    corecore