670 research outputs found

    Resistance of Subtype C HIV-1 Strains to Anti-V3 Loop Antibodies

    Get PDF
    HIV-1's subtype C V3 loop consensus sequence exhibits increased resistance to anti-V3 antibody-mediated neutralization as compared to the subtype B consensus sequence. The dynamic 3D structure of the consensus C V3 loop crown, visualized by ab initio folding, suggested that the resistance derives from structural rigidity and non-β-strand secondary protein structure in the N-terminal strand of the β-hairpin of the V3 loop crown, which is where most known anti-V3 loop antibodies bind. The observation of either rigidity or non-β-strand structure in this region correlated with observed resistance to antibody-mediated neutralization in a series of chimeric pseudovirus (psV) mutants. The results suggest the presence of an epitope-independent, neutralization-relevant structural difference in the antibody-targeted region of the V3 loop crown between subtype C and subtype B, a difference that we hypothesize may contribute to the divergent pattern of global spread between these subtypes. As antibodies to a variable loop were recently identified as an inverse correlate of risk for HIV infection, the structure-function relationships discussed in this study may have relevance to HIV vaccine research

    Alternative Conformations of HIV-1 V3 Loops Mimic β Hairpins in Chemokines, Suggesting a Mechanism for Coreceptor Selectivity

    Get PDF
    AbstractThe V3 loop of the HIV-1 envelope glycoprotein gp120 is involved in binding to the CCR5 and CXCR4 coreceptors. The structure of an HIV-1MN V3 peptide bound to the Fv of the broadly neutralizing human monoclonal antibody 447-52D was solved by NMR and found to be a β hairpin. This structure of V3MN was found to have conformation and sequence similarities to β hairpins in CD8 and CCR5 ligands MIP-1α, MIP-1β, and RANTES and differed from the β hairpin of a V3IIIB peptide bound to the strain-specific murine anti-gp120IIIB antibody 0.5β. In contrast to the structure of the bound V3MN peptide, the V3IIIB peptide resembles a β hairpin in SDF-1, a CXCR4 ligand. These data suggest that the 447-52D-bound V3MN and the 0.5β-bound V3IIIB structures represent alternative V3 conformations responsible for selective interactions with CCR5 and CXCR4, respectively

    Focusing the immune response on the V3 loop, a neutralizing epitope of the HIV-1 gp120 envelope

    Get PDF
    AbstractRabbits were immunized with a novel regimen designed to focus the immune response on a single neutralizing epitope of HIV-1 gp120 and thereby preferentially induce neutralizing antibodies (Abs). Animals were primed with gp120 DNA from a clade A Env bearing the GPGR V3 motif and/or a clade C Env bearing the GPGQ V3 motif, and boosted with one or more fusion proteins containing V3 sequences from clades A, B and/or C. Immune sera neutralized three of four Tier 1 primary isolates, including strains heterologous to the immunizing strains, and potent cross-clade-neutralizing activity was demonstrated against V3 chimeric pseudoviruses carrying in a Tier 1 Env, the consensus V3 sequences from clades A1, AG, B, AE, or F. The broadest and most potent neutralizing responses were elicited with the clade C gp120 DNA and a combination of V3-fusion proteins from clades A, B and C. Neutralizing activity was primarily due to V3-specific Abs. The results demonstrate that the immune response can be focused on a neutralizing epitope and show that the anti-V3 Abs induced recognize a diverse set of V3 loops

    Indirect Detection of an Epitope-Specific Response to HIV-1 gp120 Immunization in Human Subjects

    Get PDF
    A specific response of human serum neutralizing antibodies (nAb) to a conformational epitope as a result of vaccination of human subjects with the surface envelope glycoprotein (gp120) of HIV-1 has not previously been documented. Here, we used computational analysis to assess the epitope-specific responses of human subjects, which were immunized with recombinant gp120 immunogens in the VAX003 and VAX004 clinical trials. Our computational methodology—a variation of sieve analysis—compares the occurrence of specific nAb targeted conformational 3D epitopes on viruses from infected individuals who received vaccination to the occurrence of matched epitopes in the viruses infecting placebo subjects. We specifically studied seven crystallographically defined nAb targeted conformational epitopes in the V3 loop, an immunogenic region of gp120. Of the six epitopes present in the immunogens and targeted by known monoclonal neutralizing antibodies, only the one targeted by the anti-V3 nAb 2219 exhibited a significant reduction in occurrence in vaccinated subjects compared to the placebo group. This difference occurred only in the VAX003 Thailand cohort. No difference was seen between vaccinated and placebo groups for the occurrence of an epitope that was not present in the immunogen. Thus, it can be theorized that a specific 2219-like human neutralizing antibody immune response to AIDSVAX immunization occurred in the VAX003 cohort, and that this response protected subjects from a narrow subset of HIV-1 viruses circulating in Thailand in the 1990s and bearing the conformational epitope targeted by the neutralizing antibody 2219

    Skin tattooing as an effective tool for delivering DNA and protein vaccine immunogens

    Get PDF

    The W100 pocket on HIV-1 gp120 penetrated by b12 is not a target for other CD4bs monoclonal antibodies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The conserved CD4 binding site (CD4bs) on HIV-1 gp120 is a major target for vaccines. It is a priority to determine sites and structures within the CD4bs that are important for inclusion in vaccines. We studied a gp120 pocket penetrated by W100 of the potent CD4bs monoclonal antibody (mab), b12. We compared HIV-1 envelopes and corresponding mutants that carried blocked W100 pockets to evaluate whether other CD4bs mabs target this site.</p> <p>Findings</p> <p>All CD4bs mabs tested blocked soluble CD4 binding to gp120 consistent with their designation as CD4bs directed antibodies. All CD4bs mabs tested neutralized pseudovirions carrying NL4.3 wild type (wt) envelope. However, only b12 failed to neutralize pseudoviruses carrying mutant envelopes with a blocked W100 pocket. In addition, for CD4bs mabs that neutralized pseudovirions carrying primary envelopes, mutation of the W100 pocket had little or no effect on neutralization sensitivity.</p> <p>Conclusions</p> <p>Our data indicate that the b12 W100 pocket on gp120 is infrequently targeted by CD4bs mabs. This site is therefore not a priority for preservation in vaccines aiming to elicit antibodies targeting the CD4bs.</p
    corecore