58 research outputs found

    Experimental study of the effect of drilling pipe on vortex-induced vibration of drilling risers

    Get PDF
    A vortex-induced vibration experiment considers drilling conditions has not been conducted. A new experimental facility was designed to investigate effect of drilling pipe on vortex-induced vibration. Results show that vortex-induced vibration can be inhibited with the increasing drilling pipe tension. Strain amplitude decrease with the increase in drilling pipe tension and strain amplitude decreases significantly with increasing pipe tension at high current speed. Drilling pipe tension does not affect the dominant vibration frequency. Interaction between the IL and CF vibration and the multi-modal phenomenon are more apparent for the periodically contacting and colliding between the drilling pipe and risers

    Lift force, drag force, and tension response in vortex-induced vibration for marine risers under shear flow

    Get PDF
    An experiment was performed in a deep-water basin to investigate VIV mechanisms under shear flow. Lift force, drag force, and tension response were obtained. Results show that multiple frequencies are appeared for nonuniform vortex shedding frequency and interaction between the IL and CF vibrations. Beat phenomenon is observed in time history of lift force, and decreased with the increasing riser pretension. Dominant frequencies of riser tension are consistent with the IL and CF dominant frequency, and amplitudes of the tension are not uniform. VIV is inhibited with increasing riser pretension and the dominant frequencies also increase with increasing riser tension

    Effect of drilling pipe rotation on vortex induced vibration response of drilling riser

    Get PDF
    An experiment was carried out in a basin to investigate rotation of drilling pipe on vortex induced vibration response of drilling riser. Vibration displacement time-history and frequency are obtained. Results show that dominant vibration frequency in the in-line direction is almost twice as high as that in the cross-flow direction. The vibration amplitudes in both the cross-flow and in-line direction increase with an increase in rotation speed of drilling pipe under the experimental conditions. However, the influence of rotation speed drilling pipe on drilling riser vibration amplitude is insignificant. Dominant frequencies are invariant with variation of drilling pipe rotation under experimental conditions

    Exponential Synchronization Analysis and Control for Discrete-Time Uncertain Delay Complex Networks with Stochastic Effects

    Get PDF
    The exponential synchronization for a class of discrete-time uncertain complex networks with stochastic effects and time delay is investigated by using the Lyapunov stability theory and discrete Halanay inequality. The uncertainty arises from the difference of the nodes’ reliability in the complex network. Through constructing an appropriate Lyapunov function and applying inequality technique, some synchronization criteria and two control methods are obtained to ensure the considered complex network being exponential synchronization. Finally, a numerical example is provided to show the effectiveness of our proposed methods

    Experimental study of vortex-induced vibration for drilling risers under uniform flow current

    Get PDF
    An experiment was conducted in a deep water basin to investigate the vortex-induced vibration mechanism of a drilling riser. Various measurements were obtained by the fiber Bragg grating strain sensors, and data was analyzed by modal analysis method. Results show that the vibration mode of the drilling riser increases with the increasing flow velocity, and the vibration amplitude in the CF direction is larger than that in the IL direction. The vibrations in the CF and IL directions interact and mutually affect each other. The vibration mode in the IL direction is usually larger than that in the CF direction as the dominant vibration frequency is twice of that in the CF direction. Higher stresses may occur rather in the IL direction than in the CF direction. Hence, fatigue induced by the IL direction should also be taken into consideration when analyzing the fatigue life of a drilling riser. The three-time harmonic appears, and the phenomenon becomes more obvious as the flow velocity increased for the effect of the “2T” wake mode under the experiment condition. Displacement trajectories are significantly influenced by dominant vibration frequency and phase angle between the CF and IL directions. Crescent shapes, figure-eight, and inclined figure-eight are appeared in the experiment with the increasing flow velocity

    Lift force, drag force, and tension response in vortex-induced vibration for marine risers under shear flow

    Get PDF
    An experiment was performed in a deep-water basin to investigate VIV mechanisms under shear flow. Lift force, drag force, and tension response were obtained. Results show that multiple frequencies are appeared for nonuniform vortex shedding frequency and interaction between the IL and CF vibrations. Beat phenomenon is observed in time history of lift force, and decreased with the increasing riser pretension. Dominant frequencies of riser tension are consistent with the IL and CF dominant frequency, and amplitudes of the tension are not uniform. VIV is inhibited with increasing riser pretension and the dominant frequencies also increase with increasing riser tension

    Experimental study of the vortex-induced vibration of drilling risers under the shear flow with the same shear parameter at the different Reynolds numbers.

    No full text
    A considerable number of studies for VIV under the uniform flow have been performed. However, research on VIV under shear flow is scarce. An experiment for VIV under the shear flow with the same shear parameter at the two different Reynolds numbers was conducted in a deep-water offshore basin. Various measurements were obtained by the fiber bragg grating strain sensors. Experimental data were analyzed by modal analysis method. Results show several valuable features. First, the corresponding maximum order mode of the natural frequency for shedding frequency is the maximum dominant vibration mode and multi-modal phenomenon is appeared in VIV under the shear flow, and multi-modal phenomenon is more apparent at the same shear parameter with an increasing Reynolds number under the shear flow effect. Secondly, the riser vibrates at the natural frequency and the dominant vibration frequency increases for the effect of the real-time tension amplitude under the shear flow and the IL vibration frequency is the similar with the CF vibration frequency at the Reynolds number of 1105 in our experimental condition and the IL dominant frequency is twice the CF dominant frequency with an increasing Reynolds number. In addition, the displacement trajectories at the different locations of the riser appear the same shape and the shape is changed at the same shear parameter with an increasing Reynolds number under the shear flow. The diagonal displacement trajectories are observed at the low Reynolds number and the crescent-shaped displacement trajectories appear with an increasing Reynolds number under shear flow in the experiment

    CNS Germ Cell Tumors: Molecular Advances, Significance in Risk Stratification and Future Directions

    No full text
    Central Nervous System Germ Cell Tumors (CNS GCTs) represent a subtype of intracranial malignant tumors characterized by highly heterogeneous histology. Current diagnostic methods in clinical practice have notable limitations, and treatment strategies struggle to achieve personalized therapy based on patient risk stratification. Advances in molecular genetics, biology, epigenetics, and understanding of the tumor microenvironment suggest the diagnostic potential of associated molecular alterations, aiding risk subgroup identification at diagnosis. Furthermore, they suggest the existence of novel therapeutic approaches targeting chromosomal alterations, mutated genes and altered signaling pathways, methylation changes, microRNAs, and immune checkpoints. Moving forward, further research is imperative to explore the pathogenesis of CNS GCTs and unravel the intricate interactions among various molecular alterations. Additionally, these findings require validation in clinical cohorts to assess their role in the diagnosis, risk stratification, and treatment of patients

    Reachable Set Estimation for Uncertain Markovian Jump Systems with Time-Varying Delay and Disturbances

    No full text
    In this paper, we are concerned with the problem of reachable set estimation for uncertain Markovian jump systems with time-varying delays and disturbances. The main consideration is to find a proper method to obtain the no-ellipsoidal bound of the reachable set of Markovian jump system as small as possible. Based on an augmented Lyapunov–Krasovskii functional, by dividing the time-varying delay into two nonuniform subintervals, more general delay-dependent stability criteria for the existence of a desired ellipsoid are derived. An optimized integral inequality which is based on distinguished Wirtinger integral inequality and reciprocally convex combination inequality is used to deal with the integral terms. Finally, numerical examples are presented to demonstrate the effectiveness of the theoretical results
    • …
    corecore