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The exponential synchronization for a class of discrete-time uncertain complex networks with
stochastic effects and time delay is investigated by using the Lyapunov stability theory and
discrete Halanay inequality. The uncertainty arises from the difference of the nodes’ reliability
in the complex network. Through constructing an appropriate Lyapunov function and applying
inequality technique, some synchronization criteria and two control methods are obtained to
ensure the considered complex network being exponential synchronization. Finally, a numerical
example is provided to show the effectiveness of our proposed methods.

1. Introduction

Since the discovery of small-world effect [1] and scale-free feature [2] of complex networks,
many researchers in the fields of science and engineering have paid more attention to the
topic and provided some valuable results which can be found in [3–9] and the references
therein. Particularly, the broad application in the fields of ecosystems, the Internet, biological
neural networks, and large-scale robotic system (see [10–12]), and so forth, promotes the
complex network becoming a more significant topic.

Synchronization, as one of the important dynamical characters of the complex
networks, has been studied in many papers. For example, the authors studied the pinning
synchronization problem of stochastic impulsive network by using Lyapunov stability
theory and provided some sufficient criteria to ensure that the dynamical network is
asymptotical synchronization and exponential synchronization in mean square in [13]. Based
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on the parameter-dependent Lyapunov function, the authors considered the synchronization
problem for a network family with different network structure and proposed some
synchronization criteria in [14]. Similar with the continuous complex networks, there also
exist many control methods to study the synchronization stability for discrete complex
networks recently, which can be found in [15–20] and the references therein. For instance, the
authors investigated the synchronization problem for the discrete-time complex networks
with distributed time delays by using the Lyapunov stability theory, Kronecker product,
and the linear matrix inequalities method in [17]. In [18], the authors revisited the
synchronization stability problem for discrete complex dynamical networks with a time
varying delay and constructed a new Lyapunov-Krasovskii functional by dividing the time-
varying delay into a constant part and a variant part. In [20], the authors investigated
the synchronization and state estimation problems for discrete-time complex network by
utilizing a time varying real-valued function and the Kronecker product and provided a novel
concept of bounded H∞ synchronization.

However, in the real world, some nodes in a complex network usually do not
normally work for some reasons. Particularly, this phenomenon easily appears in a complex
network composed of many electronic components since that the reliability of every electric
component exists the difference in general. The reason resulted in this phenomenon can
be found in [21–23]. Therefore, it is necessary to study the synchronization problem for
this kind of complex network with uncertain nodes. Motivated by the above discussion,
we intend to study the exponential synchronization problem for a discrete-time uncertain
complex network with stochastic effects in this paper. Different from some previous papers,
the contributions of our paper are as follows. (1) We consider the uncertainty arising from
the nodes’ reliability in the complex network. (2) We consider the case that all the nodes in
the complex network are effected by the working circumstance. (3)Our approach used in the
paper is different from the methods in the papers listed.

The rest of this paper is organized as follows. In Section 2, the investigated discrete
complex network and some necessary lemmas, assumptions are given. In Section 3, the
exponential synchronization criteria and control methods for the complex network are
derived. In Section 4, a numerical example is provided to illustrate the effectiveness of our
method. Finally, this paper is ended with a conclusion in Section 5.

Notation 1. In this paper, Rn and Rn×m, respectively, denote the n-dimensional Euclidean
space and the set of all n × m real matrices. For a vector x(t) = (x1(t), x2(t), . . . , xn(t))

T ∈
Rn, ‖x(t)‖ =

√∑n
i=1 x

2
i (t) denotes its norm. AT denotes the transpose of matrix A.

(Ω,F, {Ft}t≥0,P) denotes the complete probability space with a filtration {Ft}t≥0 satisfying
right continuous and F0 containing all P-null sets. In is the n × n identical matrix. 1n =
(1, 1, . . . , 1)T and 1n×n ∈ Rn×n are an n-dimensional vector and an n × n matrix with all the
elements being 1, respectively. ⊗ is the Kronecker product. λmax(H) stands for the biggest
eigenvalues of matrix H. E{·} denotes the mathematical expectation.

2. Preliminaries

In this paper, we consider the following discrete-time complex network consisting of N
identical nodes with diffusive couplings. Each node is an n-dimensional dynamical system
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and the state equation is

xi(k + 1) = Axi(k) + f(xi(k), xi(k − τ(k))) + c
N∑

j=1,j /= i

ξigijΓ
[
xj(k − τ(k)) − xi(k − τ(k))

]
+ ui(k)

+ ϕ(xi(k))w(k), i = 1, 2, . . . ,N,

(2.1)

whereN is the number of coupled nodes. xi(k) = (xi1(k), xi2(k), . . . , xin(k))
T ∈ Rn is the state

vector of node i at sampling time kT with sampling period T > 0, A ∈ Rn×n is a constant
matrix, f(·) : Rn × Rn → Rn is a nonlinear vector function, and scalar c > 0 denotes the
coupling strength. The working situation of every node in the complex network is described
by two random events:

Event 1 : the node is available,

Event 2 : the node is unavailable.
(2.2)

Random variables ξi (i = 1, 2, . . . ,N) are defined as

ξi =

{
1, if Event 1 occurs,
0, if Event 2 occurs,

(2.3)

where ξi(i = 1, 2, . . . ,N) areN independent random variables with mathematical expectation
E{ξi} = pi and the variance Var{ξi} = qi. In practice, since the availability of each node in
the considered complex network is usually not identical, so it is very reasonable to describe
the working situation using different random variables for different nodes. Outer-coupling
matrix

G =

⎡
⎢⎢⎣

g11 g12 · · · g1N
g21 g22 · · · g2N
· · · · · · · · · · · ·
gN1 gN2 · · · gNN

⎤
⎥⎥⎦ =

[
g11 G12

G21 G22

]
, (2.4)

where gii = −∑N
j=1,j /= i gij , G12 = [ g12 g13 ··· g1N ], and G21 = [ g21 g31 ··· gN1 ]T . gij (i, j = 1, 2, . . . ,N)

are defined as follows: if there exists a connection between node i with node j, then gij = 1,
or else gij = 0. Inner-coupling matrix Γ ∈ Rn×n is a positive definite diagonal matrix. τ(k)
denotes the transmission time delay and satisfies 0 ≤ τ(k) ≤ τ for a positive scalar τ > 0.
w(k) is a scalar Wiener process defined on a probability space (Ω,F, {Ft}t≥0,P) with

E{w(k)} = 0, E
{
w2(k)

}
= 1, E

{
w(i)w

(
j
)}

= 0, i /= j. (2.5)
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The noise strength ϕ(·) : Rn → Rn is a vector function. ui(k) ∈ Rn (i = 1, 2, . . . ,N) are the
control input to be designed. The complex network (2.1) can be written as

xi(k + 1) = Axi(k) + f(xi(k), xi(k − τ(k))) + c
N∑
j=1

ξigijΓxj(k − τ(k)) + ui(k)

+ ϕ(xi(k))w(k), i = 1, 2, . . . ,N.

(2.6)

Letting ei(k) = xi(k) − x1(k), we get

ei(k + 1) = Aei(k) + f(xi(k), xi(k − τ(k))) − f(x1(k), x1(k − τ(k))) + c
N∑
j=1

ξigijΓxj(k − τ(k))

− c
N∑
j=1

ξ1g1jΓxj(k − τ(k)) + ui(k) − u1(k) +
[
ϕ(xi(k)) − ϕ(x1(k))

]
w(k),

i = 2, . . . ,N.

(2.7)

Define

e(k) =
(
eT2 (k), e

T
3 (k), . . . , e

T
N(k)

)T
, ξ̂ = diag(ξ2, ξ3, . . . , ξN), ξ = ξ1 · IN−1,

P̂ = diag
(
p2, p3, . . . , pN

)
, P = p1 · IN−1, Q̂ = diag

(
q2, q3, . . . , qN

)
, Q = q1 · IN−1,

Fi(ei(k)) = f(xi(k), xi(k − τ(k))) − f(x1(k), x1(k − τ(k))),

F(e(k)) =
(
FT
2 (e2(k)), F

T
3 (e3(k)), . . . , F

T
N(eN(k))

)T
,

u(k) =
(
uT
2 (k), u

T
3 (k), . . . , u

T
N(k)

)T
,

Ψi(ei(k)) = ϕ(xi(k)) − ϕ(x1(k)), Ψ(e(k)) =
(
ΨT

2 (e2(k)),Ψ
T
3 (e3(k)), . . . ,Ψ

T
N(eN(k))

)T
,

G1 =

⎡
⎢⎢⎣

g12 g13 · · · g1N
g12 g13 · · · g1N
· · · · · · · · · · · ·
g12 g13 · · · g1N

⎤
⎥⎥⎦ ∈ R(N−1)×(N−1),

(2.8)

then the error system (2.7) can be written as the following form

e(k+1) = (IN−1⊗A)e(k)+F(e(k))+c
(
ξ̂G22

)
⊗ Γe(k−τ(k))−c

(
ξG1

)
⊗Γe(k − τ(k))

+ u(k) − 1N−1 ⊗ u1(k) + Ψ(e(k))w(k).
(2.9)
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Note that (2.9) is equivalent to

e(k + 1) = (IN−1 ⊗A)e(k) + F(e(k)) + c
(
P̂G22

)
⊗ Γe(k − τ(k)) − c

(
PG1

)
⊗ Γe(k − τ(k))

+ c
[(

ξ̂ − P̂
)
G22

]
⊗ Γe(k − τ(k)) − c

[(
ξ − P

)
G1

]
⊗ Γe(k − τ(k))

+ u(k) − 1N−1 ⊗ u1(k) + Ψ(e(k))w(k).
(2.10)

Letting Θ1 = cP̂G22 − cPG1, Θ2 = c(ξ̂ − P̂)G22 − c(ξ − P)G1, then we have

e(k + 1) = (IN−1 ⊗A)e(k) + F(e(k)) + Θ1 ⊗ Γe(k − τ(k)) + Θ2 ⊗ Γe(k − τ(k)) + u(k)

− 1N−1 ⊗ u1(k) + Ψ(e(k))w(k).
(2.11)

Throughout this paper, the following assumptions are needed.

(A1) The nonlinear vector function f(·) in the system (2.1) satisfies

∥∥f(x(k), x(k − τ(k))) − f
(
y(k), y(k − τ(k))

)∥∥2

≤ L1
∥∥x(k) − y(k)

∥∥2 + L2
∥∥x(k − τ(k)) − y(k − τ(k))

∥∥2
(2.12)

for any x(k) ∈ Rn and y(k) ∈ Rn, where L1 ≥ 0 and L2 ≥ 0 are positive constants.

From (2.12), it can be verified that

‖Fi(ei(k))‖2 ≤ L1‖ei(k)‖2 + L2‖ei(k − τ(k))‖2 (2.13)

for i = 2, 3, . . . ,N.

(A2) There exists a positive constant M > 0 such that the nonlinear vector function ϕ(·)
in the system (2.1) satisfies

∥∥ϕ(x(k)) − ϕ
(
y(k)

)∥∥ ≤ M
∥∥x(k) − y(k)

∥∥ (2.14)

for any x(k) ∈ Rn and y(k) ∈ Rn.
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From (2.14), one can conclude that

ΨT (e(k))Ψ(e(k)) =
N∑
i=2

ΨT
i (ei(k))Ψi(ei(k))

≤
N∑
i=2

M2eTi (k)ei(k)

= M2eT (k)e(k).

(2.15)

Definition 2.1. The complex network (2.1) is said to be exponential synchronization in mean
square if there exist positive constants h > 0 and γ ∈ (0, 1) such that

E
{∥∥xi(k) − xj(k)

∥∥2
}
≤ hγk, i, j = 1, 2, . . . ,N, k = 1, 2, . . . (2.16)

for any initial values x(s), s = −τ, . . . , 0, where γ is called the exponential convergence rate.

Remark 2.2. FromDefinition 2.1, it is easy to see that the complex network (2.1) is exponential
synchronization in mean square only if there exist positive constants h > 0 and γ ∈ (0, 1) such
that

E
{
‖xi(k) − x1(k)‖2

}
≤ hγk, i = 2, . . . ,N, k = 1, 2, . . . (2.17)

for any initial values x(s), s = −τ, . . . , 0.

Remark 2.3. The complex network model (2.1) not only includes time delay and stochastic
disturbances, but also considers the uncertainty of nodes’ working situation. To date, there
have existed many literatures [13, 15, 19] to study the synchronization control problem for
discrete-time complex networks. However, for this case, there exist less results. Moreover,
different from [13, 17], we are not necessary to use the information of target node given
beforehand in the paper.

Lemma 2.4 (see [24]). Let d > 0 be a natural number and {U(k)}k≥−d a sequence of real numbers
satisfying the inequality

ΔU(k) ≤ −aU(k) + b ·max{U(k), U(k − 1), . . . , U(k − d)}, k ≥ 0, (2.18)

where ΔU(k) = U(k + 1) −U(k). If 0 < b < a ≤ 1, then there exists a constant η0 ∈ (0, 1) such that

U(k) ≤ max{0, U(0), U(−1), . . . , U(−d)}ηk
0 , k ≥ 0. (2.19)
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Moreover, η0 can be chosen as the root of the equation

ηd+1 + (a − 1)ηd − b = 0 (2.20)

in the interval (0, 1).

Lemma 2.5 (see [25]). The Kronecker product ⊗ has the following properties:

(1) (A + B) ⊗ C = A ⊗ C + B ⊗ C,C ⊗ (A + B) = C ⊗A + C ⊗ B,

(2) (A ⊗ B)T = AT ⊗ BT ,

(3) (A ⊗ B)−1 = A−1 ⊗ B−1,

(4) (A ⊗ C)(B ⊗D) = AB ⊗ CD.

where, A,B,C, and D are real matrices with appropriate dimensions.

3. Synchronization Analysis and Control

In this section, we will derive some synchronization criteria for the complex network (2.1)
without input and two different synchronization control methods, respectively.

Theorem 3.1. Under assumptions (A1)∼(A2), if there exist positive constants δ1 > 0, δ2 > 0, α > 0,
and β > 0 such that

β < α ≤ 1,

Π1 =
[
IN−1 ⊗

[(
M2 + α

) · In + (1 + δ1 + δ2)L1 · In +ATA − In
]

IN−1 ⊗AT

IN−1 ⊗A −δ1 · In(N−1)

]
< 0,

Π2 =
[
(1 + δ1 + δ2)L2 · In(N−1) − βIn(N−1) +

(
ΘT

1Θ1 + Θ3
) ⊗ ΓTΓ ΘT

1 ⊗ ΓT

Θ1 ⊗ Γ −δ2 · In(N−1)

]
< 0,

(3.1)

where Θ3 = c2GT
22Q̂G22 + c2GT

1QG1, then the complex network (2.1) without input is exponential
synchronization in mean square.

Proof. Choosing the following Lyapunov function:

V (e(k)) = eT(k)e(k), (3.2)
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and calculating the difference of V (e(k)) along the trajectories of the system (2.11) without
the input, we get

E{ΔV (e(k))} = E{V (e(k + 1)) − V (e(k))}

= E
{
[(IN−1 ⊗A)e(k) + F(e(k)) + Θ1 ⊗ Γe(k − τ(k)) + Θ2 ⊗ Γe(k − τ(k))]T

× [(IN−1 ⊗A)e(k) + F(e(k)) + Θ1 ⊗ Γe(k − τ(k)) + Θ2 ⊗ Γe(k − τ(k))]

− eT(k)e(k) + ΨT (e(k))Ψ(e(k))
}

= E
{
eT (k)

[
IN−1 ⊗

(
ATA

)]
e(k) + 2eT (k)

(
IN−1 ⊗AT

)
F(e(k))

+ 2eT (k)
(
Θ1 ⊗ATΓ

)
e(k − τ(k)) + 2eT (k)

(
Θ2 ⊗ATΓ

)
e(k − τ(k))

+ FT (e(k))F(e(k)) + 2FT (e(k))(Θ1 ⊗ Γ)e(k − τ(k))

+ 2FT (e(k))(Θ2 ⊗ Γ)e(k − τ(k))

+ eT(k − τ(k))
[(

ΘT
1Θ1 + 2ΘT

1Θ2 + ΘT
2Θ2

)
⊗ ΓTΓ

]
e(k − τ(k))

− eT(k)e(k) + ΨT (e(k))Ψ(e(k))
}

= E
{
eT (k)

[
IN−1 ⊗

(
ATA − In

)]
e(k) + 2eT (k)

(
IN−1 ⊗AT

)
F(e(k))

+ 2eT (k)
(
Θ1 ⊗ATΓ

)
e(k − τ(k)) + FT (e(k))F(e(k))

+ 2FT (e(k))(Θ1 ⊗ Γ)e(k − τ(k)) + ΨT (e(k))Ψ(e(k))

+ eT(k − τ(k))
[(

ΘT
1Θ1 + Θ3

)
⊗ ΓTΓ

]
e(k − τ(k))

}
.

(3.3)

It is noted that

E
{
2eT (k)

(
IN−1 ⊗AT

)
F(e(k))

}

≤ E
{
δ−1
1 eT (k)

(
IN−1 ⊗AT

)
(IN−1 ⊗A)e(k) + δ1F

T (e(k))F(e(k))
}

≤ E
{
δ−1
1 eT (k)

(
IN−1 ⊗AT

)
(IN−1 ⊗A)e(k)

+ L1δ1e
T(k)e(k) + L2δ1e

T (k − τ(k))e(k − τ(k))
}
,
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E
{
2FT (e(k))(Θ1 ⊗ Γ)e(k − τ(k))

}

≤ E
{
δ2F

T (e(k))F(e(k)) + δ−1
2 eT (k − τ(k))

(
ΘT

1 ⊗ ΓT
)
(Θ1 ⊗ Γ)e(k − τ(k))

}

≤ E
{
δ2L1e

T(k)e(k) + δ2L2e
T (k − τ(k))e(k − τ(k))

+ δ−1
2 eT(k − τ(k))

(
ΘT

1 ⊗ ΓT
)
(Θ1 ⊗ Γ)e(k − τ(k))

}
,

E
{
FT (e(k))F(e(k))

}
≤ E

{
L1e

T (k)e(k) + L2e
T (k − τ(k))e(k − τ(k))

}
,

ΨT (e(k))Ψ(e(k)) ≤ M2eT(k)e(k).

(3.4)

From (3.4), one can get

E{ΔV (e(k))} ≤ E
{
eT (k)

[
IN−1 ⊗

(
ATA − In

)
+ δ−1

1

(
IN−1 ⊗AT

)
(IN−1 ⊗A)

+ (1 + δ1 + δ2)L1 · In(N−1) +M2 · In(N−1)
]
e(k)

+ eT(k − τ(k))
[(

ΘT
1Θ1 + Θ3

)
⊗ ΓTΓ + (1 + δ1 + δ2)L2 · In(N−1)

+ δ−1
2

(
ΘT

1 ⊗ ΓT
)
(Θ1 ⊗ Γ)

]
e(k − τ(k))

}

≤ E
{
eT (k)Ω1e(k) + eT (k − τ(k))Ω2e(k − τ(k))

}
,

(3.5)

where

Ω1 = M2 · In(N−1) + (1 + δ1 + δ2)L1 · In(N−1) + IN−1 ⊗
(
ATA − In

)
+ δ−1

1

(
IN−1 ⊗AT

)
(IN−1 ⊗A),

Ω2 = (1 + δ1 + δ2)L2 · In(N−1) +
(
ΘT

1Θ1 + Θ3

)
⊗ ΓTΓ + δ−1

2

(
ΘT

1 ⊗ ΓT
)
(Θ1 ⊗ Γ).

(3.6)

By the Schur complement lemma, we know that (3.1) is equivalent to Ω1 < −αIn(N−1) and
Ω2 < βIn(N−1). So, we have

E{ΔV (e(k))} ≤ E
{−αV (e(k)) + β ·max{V (e(k)), V (e(k − 1)), . . . , V (e(k − τ))}}. (3.7)

By Lemma 2.4, there exists a constant η0 ∈ (0, 1) such that

E{V (e(k))} ≤ max{V (e(0)), V (e(−1)), . . . , V (e(−τ))}ηk
0 , k ≥ 0. (3.8)
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In particular, η0 is the root of the equation

ηd+1 + (α − 1)ηd − β = 0 (3.9)

in the interval (0, 1). Therefore, the complex network (2.1) is exponential synchronization in
mean square. This completes the proof of Theorem 3.1.

While using the following state feedback controller:

ui(k) = −kxi(k), i = 1, 2, . . . ,N, (3.10)

to control every node in the complex network (2.1), we can obtain the error system

e(k + 1) = [IN−1 ⊗ (A − kIn)]e(k) + F(e(k)) + Θ1 ⊗ Γe(k − τ(k))

+ Θ2 ⊗ Γe(k − τ(k)) + Ψ(e(k))w(k),
(3.11)

where k > 0 is the control gain to be determined. So, by Theorem 3.1, we can obtain the
following result.

Theorem 3.2. Under assumptions (A1)∼(A2), if there exist positive constants k > 0, δ1 > 0, δ2 >
0, α > 0, and β > 0 such that

β < α ≤ 1,

Π̂1 =

⎡
⎢⎣

Π̂1,11 IN−1 ⊗ (A − kIn)
T IN−1 ⊗ (A − kIn)

T

IN−1 ⊗ (A − kIn) −δ1 · In(N−1) 0
IN−1 ⊗ (A − kIn) 0 −In(N−1)

⎤
⎥⎦ < 0,

Π2 =
[
(1 + δ1 + δ2)L2 · In(N−1) − βIn(N−1) +

(
ΘT

1Θ1 + Θ3
) ⊗ ΓTΓ ΘT

1 ⊗ ΓT

Θ1 ⊗ Γ −δ2 · In(N−1)

]
< 0,

(3.12)

where

Π̂1,11 = IN−1 ⊗
{[

M2 + α + (1 + δ1 + δ2)L1 − 1
]
· In

}
, (3.13)

then the complex network (2.1) is exponential synchronization in mean square under the action of the
controller (3.10).

While using the pinning controller to control arbitrary l nodes in the complex network
(2.1), we suppose that the number of the controlled nodes are 2, 3, . . . , l + 1, respectively.
Substituting the following control law:

ui(k) = −kixi(k), i = 2, 3, . . . , l + 1, (3.14)
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into the error system (2.11), we get

e(k + 1) = [IN−1 ⊗A −K ⊗ In]e(k) + F(e(k)) + Θ1 ⊗ Γe(k − τ(k))

+ Θ2 ⊗ Γe(k − τ(k)) + Ψ(e(k))w(k),
(3.15)

where ki > 0 (i = 2, 3, .., l + 1) are the control gains to be determined, K = diag(k2, k3, . . . ,
kl+1, 0, . . . , 0︸ ︷︷ ︸

N−1−l

). By Theorem 3.1, we can obtain the following result.

Theorem 3.3. Under assumptions (A1)∼(A2), if there exist positive constants ki > 0 (i=2,3,. . . ,l+1),
δ1 > 0, δ2 > 0, α > 0, and β > 0 such that

β < α ≤ 1,

Π̃1 =

⎡
⎢⎣

Π̃1,11 IN−1 ⊗AT −K ⊗ In IN−1 ⊗AT −K ⊗ In
IN−1 ⊗A −K ⊗ In −δ1 · In(N−1) 0
IN−1 ⊗A −K ⊗ In 0 −In(N−1)

⎤
⎥⎦ < 0,

Π2 =
[
(1 + δ1 + δ2)L2 · In(N−1) − βIn(N−1) +

(
ΘT

1Θ1 + Θ3
) ⊗ ΓTΓ ΘT

1 ⊗ ΓT

Θ1 ⊗ Γ −δ2 · In(N−1)

]
< 0,

(3.16)

where

Π̃1,11 = IN−1 ⊗
{[

M2 + α + (1 + δ1 + δ2)L1 − 1
]
· In

}
, (3.17)

then the complex network (2.1) is exponential synchronization in mean square under the action of the
pinning controller (3.14).

Remark 3.4. If the time delay τ(k) = 0 in the complex network (2.1), applying the same
method in the paper, we can also obtain the synchronization criteria and synchronization
controllers for the following complex network:

xi(k + 1) = Axi(k) + f(xi(k)) + c
N∑

j=1,j /= i

ξigijΓ
[
xj(k) − xi(k)

]

+ ui(k) + ϕ(xi(k))w(k)

(3.18)

for i = 1, 2, . . . ,N.

Remark 3.5. Similar with [21–23], we will investigate the H∞ synchronization for the
uncertain complex network (2.1) in our future work.
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4. A Numerical Example

Example 4.1. Consider the complex network (2.1)with ten nodes, and let each node be a three-
dimensional dynamical subsystem whose parameters are as follows: A = diag{0.3, 0.5, 0.4},

f(xi(k), xi(k − τ(k))) =

⎡
⎣
tanh(0.2xi1(k)) + tanh[−0.4xi1(k − τ(k))]
tanh(0.3xi2(k)) + tanh[−0.2xi2(k − τ(k))]
tanh(0.4xi3(k)) + tanh[0.1xi3(k − τ(k))]

⎤
⎦,

c = 0.1, Γ = diag{0.1, 0.2, 0.3}, τ(k) = 2 +
1
k
, ϕ(xi(k)) = 0.4xi(k),

G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−6 1 0 1 1 1 0 1 0 1
1 −5 1 0 1 0 0 1 0 1
0 1 −6 0 1 1 1 0 1 1
1 0 0 −5 1 1 0 1 0 1
1 1 1 1 −7 0 1 1 0 1
1 0 1 1 0 −6 1 1 1 0
0 0 1 0 1 1 −5 0 1 1
1 1 0 1 1 1 0 −7 1 1
1 0 1 0 0 1 1 1 −5 0
1 1 1 1 1 0 1 1 0 −7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

E{ξ1} = 0.6, E{ξ2} = 0.7, E{ξ3} = 1, E{ξ4} = 0.9, E{ξ5} = 0.7,

E{ξ6} = 1, E{ξ7} = 0.5, E{ξ8} = 0.8, E{ξ9} = 0.6, E{ξ10} = 0.9.

(4.1)

It is easy to verify that assumptions (A1)∼(A2) hold while L1 = L2 = M = 0.2. By the LMI
toolbox in the Matlab, we can obtain a feasible solution of inequalities (3.12) as follows:

δ1 = 0.2748, δ2 = 0.3624, α = 0.5126, β = 0.5047, k = 0.4003. (4.2)

Therefore, according to Theorem 3.2, we know that all the nodes in the complex network can
exponentially synchronize each other. The state error curves are shown in Figure 1, and these
figures show that all the nodes synchronize well. However, for this example, inequalities
(3.16) are infeasible. So, from Theorem 3.3, we know that all the nodes in the complex
network cannot achieve exponential synchronization by using the pinning controller (3.14).

5. Conclusions

This paper has investigated the exponential synchronization problem for a class of discrete-
time uncertain delay complex networkwith stochastic effects based on the Lyapunov stability
theory and discrete Halanay inequality and provided some synchronization criteria and two
different control schemes. Different from some existing results, this paper has considered the
uncertainty arising from the nodes’ working situation. Moreover, we do not need the state
information of the target node given beforehand. The numerical illustration has shown that
our proposed methods are effective.
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Figure 1: The state error curves of the complex network (2.1) with the given parameters in Example 4.1
(i = 2, . . . , 10).
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