166 research outputs found

    A Fusion Framework for Camouflaged Moving Foreground Detection in the Wavelet Domain

    Full text link
    Detecting camouflaged moving foreground objects has been known to be difficult due to the similarity between the foreground objects and the background. Conventional methods cannot distinguish the foreground from background due to the small differences between them and thus suffer from under-detection of the camouflaged foreground objects. In this paper, we present a fusion framework to address this problem in the wavelet domain. We first show that the small differences in the image domain can be highlighted in certain wavelet bands. Then the likelihood of each wavelet coefficient being foreground is estimated by formulating foreground and background models for each wavelet band. The proposed framework effectively aggregates the likelihoods from different wavelet bands based on the characteristics of the wavelet transform. Experimental results demonstrated that the proposed method significantly outperformed existing methods in detecting camouflaged foreground objects. Specifically, the average F-measure for the proposed algorithm was 0.87, compared to 0.71 to 0.8 for the other state-of-the-art methods.Comment: 13 pages, accepted by IEEE TI

    Foreground Detection in Camouflaged Scenes

    Full text link
    Foreground detection has been widely studied for decades due to its importance in many practical applications. Most of the existing methods assume foreground and background show visually distinct characteristics and thus the foreground can be detected once a good background model is obtained. However, there are many situations where this is not the case. Of particular interest in video surveillance is the camouflage case. For example, an active attacker camouflages by intentionally wearing clothes that are visually similar to the background. In such cases, even given a decent background model, it is not trivial to detect foreground objects. This paper proposes a texture guided weighted voting (TGWV) method which can efficiently detect foreground objects in camouflaged scenes. The proposed method employs the stationary wavelet transform to decompose the image into frequency bands. We show that the small and hardly noticeable differences between foreground and background in the image domain can be effectively captured in certain wavelet frequency bands. To make the final foreground decision, a weighted voting scheme is developed based on intensity and texture of all the wavelet bands with weights carefully designed. Experimental results demonstrate that the proposed method achieves superior performance compared to the current state-of-the-art results.Comment: IEEE International Conference on Image Processing, 201

    Urban-scale framework for assessing the resilience of buildings informed by a delphi expert consultation

    Get PDF
    The integration of resilience in disaster management is an emerging field as evidenced by an abundant literature. While resilience has been widely explored in several domains, its application demands the consideration of the entire ecosystem and its lifecycle, including disaster stressors and consequences, recovery process, and ultimately the prevention phase. In this paper, a qualitative characterization of resilience for buildings on an urban scale of analysis is achieved throughout the conduct of a Delphi-based expert consultation. The aim is to elicit and validate relevant criteria to characterize the resilience of our built-environment in face of geo-environmental hazards through two phases of consultation involving 23 and 21 respondents, respectively. The initial set of criteria consisted of 40 indicators, increasing to 48 at the end of the survey. The different criteria are clustered into seven categories, ranging from environmental to socio-organizational and technical. The results from both rounds of consultation were then analysed by means of statistical analysis with MATLAB and discussed for each category. The preliminary version of the framework for buildings’ resilience assessment on an urban scale is presented with a final set of 43 validated criteria

    Automated model construction for combined sewer overflow prediction based on efficient LASSO algorithm

    Get PDF
    The prediction of combined sewer overflow (CSO) operation in urban environments presents a challenging task for water utilities. The operation of CSOs (most often in heavy rainfall conditions) prevents houses and businesses from flooding. However, sometimes, CSOs do not operate as they should, potentially bringing environmental pollution risks. Therefore, CSOs should be appropriately managed by water utilities, highlighting the need for adapted decision support systems. This paper proposes an automated CSO predictive model construction methodology using field monitoring data, as a substitute for the commonly established hydrological-hydraulic modeling approach for time-series prediction of CSO statuses. It is a systematic methodology factoring in all monitored field variables to construct time-series dependencies for CSO statuses. The model construction process is largely automated with little human intervention, and the pertinent variables together with their associated time lags for every CSO are holistically and automatically generated. A fast least absolute shrinkage and selection operator solution generating scheme is proposed to expedite the model construction process, where matrix inversions are effectively eliminated. The whole algorithm works in a stepwise manner, invoking either an incremental or decremental movement for including or excluding one model regressor into, or from, the predictive model at every step. The computational complexity is thereby analyzed with the pseudo code provided. Actual experimental results from both single-step ahead (i.e., 15 min) and multistep ahead predictions are finally produced and analyzed on a U.K. pilot area with various types of monitoring data made available, demonstrating the efficiency and effectiveness of the proposed approach

    Efficient least angle regression for identification of linear-in-the-parameters models

    Get PDF
    Least angle regression, as a promising model selection method, differentiates itself from conventional stepwise and stagewise methods, in that it is neither too greedy nor too slow. It is closely related to L1 norm optimization, which has the advantage of low prediction variance through sacrificing part of model bias property in order to enhance model generalization capability. In this paper, we propose an efficient least angle regression algorithm for model selection for a large class of linear-in-the-parameters models with the purpose of accelerating the model selection process. The entire algorithm works completely in a recursive manner, where the correlations between model terms and residuals, the evolving directions and other pertinent variables are derived explicitly and updated successively at every subset selection step. The model coefficients are only computed when the algorithm finishes. The direct involvement of matrix inversions is thereby relieved. A detailed computational complexity analysis indicates that the proposed algorithm possesses significant computational efficiency, compared with the original approach where the well-known efficient Cholesky decomposition is involved in solving least angle regression. Three artificial and real-world examples are employed to demonstrate the effectiveness, efficiency and numerical stability of the proposed algorithm

    A Heuristic Distributed Task Allocation Method for Multivehicle Multitask Problems and Its Application to Search and Rescue Scenario

    Get PDF
    Using distributed task allocation methods for cooperating multivehicle systems is becoming increasingly attractive. However, most effort is placed on various specific experimental work and little has been done to systematically analyze the problem of interest and the existing methods. In this paper, a general scenario description and a system configuration are first presented according to search and rescue scenario. The objective of the problem is then analyzed together with its mathematical formulation extracted from the scenario. Considering the requirement of distributed computing, this paper then proposes a novel heuristic distributed task allocation method for multivehicle multitask assignment problems. The proposed method is simple and effective. It directly aims at optimizing the mathematical objective defined for the problem. A new concept of significance is defined for every task and is measured by the contribution to the local cost generated by a vehicle, which underlies the key idea of the algorithm. The whole algorithm iterates between a task inclusion phase, and a consensus and task removal phase, running concurrently on all the vehicles where local communication exists between them. The former phase is used to include tasks into a vehicle's task list for optimizing the overall objective, while the latter is to reach consensus on the significance value of tasks for each vehicle and to remove the tasks that have been assigned to other vehicles. Numerical simulations demonstrate that the proposed method is able to provide a conflict-free solution and can achieve outstanding performance in comparison with the consensus-based bundle algorithm

    A heuristic distributed task allocation method for multivehicle multitask problems and its application to search and rescue scenario

    Get PDF
    Using distributed task allocation methods for cooperating multivehicle systems is becoming increasingly attractive. However, most effort is placed on various specific experimental work and little has been done to systematically analyze the problem of interest and the existing methods. In this paper, a general scenario description and a system configuration are first presented according to search and rescue scenario. The objective of the problem is then analyzed together with its mathematical formulation extracted from the scenario. Considering the requirement of distributed computing, this paper then proposes a novel heuristic distributed task allocation method for multivehicle multitask assignment problems. The proposed method is simple and effective. It directly aims at optimizing the mathematical objective defined for the problem. A new concept of significance is defined for every task and is measured by the contribution to the local cost generated by a vehicle, which underlies the key idea of the algorithm. The whole algorithm iterates between a task inclusion phase, and a consensus and task removal phase, running concurrently on all the vehicles where local communication exists between them. The former phase is used to include tasks into a vehicle’s task list for optimizing the overall objective, while the latter is to reach consensus on the significance value of tasks for each vehicle and to remove the tasks that have been assigned to other vehicles. Numerical simulations demonstrate that the proposed method is able to provide a conflict-free solution and can achieve outstanding performance in comparison with the consensus-based bundle algorithm

    Optimization of Potable Water Distribution and Wastewater Collection Networks: A Systematic Review and Future Research Directions

    Get PDF
    Potable water distribution networks (WDNs) and wastewater collection networks (WWCNs) are the two fundamental constituents of the complex urban water infrastructure. Such water networks require adapted design interventions as part of retrofitting, extension, and maintenance activities. Consequently, proper optimization methodologies are required to reduce the associated capital cost while also meeting the demands of acquiring clean water and releasing wastewater by consumers. In this paper, a systematic review of the optimization of both WDNs and WWCNs, from the preliminary stages of development through to the state-of-the-art, is jointly presented. First, both WDNs and WWCNs are conceptually and functionally described along with illustrative benchmarks. The optimization of water networks across both clean and waste domains is then systematically reviewed and organized, covering all levels of complexity from the formulation of cost functions and constraints, through to traditional and advanced optimization methodologies. The rationales behind employing these methodologies as well as their advantages and disadvantages are investigated. This paper then critically discusses current trends and identifies directions for future research by comparing the existing optimization paradigms within WDNs and WWCNs and proposing common research directions for optimizing water networks. Optimization of urban water networks is a multidisciplinary domain, within which this paper is anticipated to be of great benefit to researchers and practitioners

    A machine learning approach to appraise and enhance the structural resilience of buildings to seismic hazards

    Get PDF
    Earthquakes often affect buildings that did comply with regulations in force at the time of design, prompting the need for new approaches addressing the complex structural dynamics of seismic design. In this paper, we demonstrate how strucural resilience can be appraised to inform optimization pathways by utilising artificial neural networks, augmented with evolutionary computation. This involves efficient multi-layer computational models, to learn complex multi-aspects structural dynamics, through several levels of abstraction. By means of single and multi-objective optimization, an existing structural system is modelled with an accuracy in excess of 98% to simulate its structural loading behaviour, while a performance-based approach is used to determine the optimum parameter settings to maximize its earthquake resilience. We have used the 2008 Wenchuan Earthquake as a case study. Our results demonstrate that an estimated structural design cost increase of 20% can lead to a damage reduction of up to 75%, which drastically reduces the risk of fatality
    • …
    corecore