2,651 research outputs found
Replication in Genome-Wide Association Studies
Replication helps ensure that a genotype-phenotype association observed in a
genome-wide association (GWA) study represents a credible association and is
not a chance finding or an artifact due to uncontrolled biases. We discuss
prerequisites for exact replication, issues of heterogeneity, advantages and
disadvantages of different methods of data synthesis across multiple studies,
frequentist vs. Bayesian inferences for replication, and challenges that arise
from multi-team collaborations. While consistent replication can greatly
improve the credibility of a genotype-phenotype association, it may not
eliminate spurious associations due to biases shared by many studies.
Conversely, lack of replication in well-powered follow-up studies usually
invalidates the initially proposed association, although occasionally it may
point to differences in linkage disequilibrium or effect modifiers across
studies.Comment: Published in at http://dx.doi.org/10.1214/09-STS290 the Statistical
Science (http://www.imstat.org/sts/) by the Institute of Mathematical
Statistics (http://www.imstat.org
Truncation of POC1A associated with short stature and extreme insulin resistance
We describe a female proband with primordial dwarfism, skeletal dysplasia, facial dysmorphism, extreme dyslipidaemic insulin resistance and fatty liver associated with a novel homozygous frameshift mutation in POC1A, predicted to affect two of the three protein products of the gene. POC1A encodes a protein associated with centrioles throughout the cell cycle and implicated in both mitotic spindle and primary ciliary function. Three homozygous mutations affecting all isoforms of POC1A have recently been implicated in a similar syndrome of primordial dwarfism, although no detailed metabolic phenotypes were described. Primary cells from the proband we describe exhibited increased centrosome amplification and multipolar spindle formation during mitosis, but showed normal DNA content, arguing against mitotic skipping, cleavage failure or cell fusion. Despite evidence of increased DNA damage in cells with supernumerary centrosomes, no aneuploidy was detected. Extensive centrosome clustering both at mitotic spindles and in primary cilia mitigated the consequences of centrosome amplification, and primary ciliary formation was normal. Although further metabolic studies of patients with POC1A mutations are warranted, we suggest that POC1A may be added to ALMS1 and PCNT as examples of centrosomal or pericentriolar proteins whose dysfunction leads to extreme dyslipidaemic insulin resistance. Further investigation of links between these molecular defects and adipose tissue dysfunction is likely to yield insights into mechanisms of adipose tissue maintenance and regeneration that are critical to metabolic health
Presymptomatic risk assessment for chronic non-communicable diseases
The prevalence of common chronic non-communicable diseases (CNCDs) far
overshadows the prevalence of both monogenic and infectious diseases combined.
All CNCDs, also called complex genetic diseases, have a heritable genetic
component that can be used for pre-symptomatic risk assessment. Common single
nucleotide polymorphisms (SNPs) that tag risk haplotypes across the genome
currently account for a non-trivial portion of the germ-line genetic risk and
we will likely continue to identify the remaining missing heritability in the
form of rare variants, copy number variants and epigenetic modifications. Here,
we describe a novel measure for calculating the lifetime risk of a disease,
called the genetic composite index (GCI), and demonstrate its predictive value
as a clinical classifier. The GCI only considers summary statistics of the
effects of genetic variation and hence does not require the results of
large-scale studies simultaneously assessing multiple risk factors. Combining
GCI scores with environmental risk information provides an additional tool for
clinical decision-making. The GCI can be populated with heritable risk
information of any type, and thus represents a framework for CNCD
pre-symptomatic risk assessment that can be populated as additional risk
information is identified through next-generation technologies.Comment: Plos ONE paper. Previous version was withdrawn to be updated by the
journal's pdf versio
A novel variant in GLIS3 is associated with osteoarthritis
Objectives Osteoarthritis (OA) is a complex disease, but its genetic aetiology remains poorly characterised. To identify novel susceptibility loci for OA, we carried out a genome-wide association study (GWAS) in individuals from the largest UK-based OA collections to date.
Methods We carried out a discovery GWAS in 5414 OA individuals with knee and/or hip total joint replacement (TJR) and 9939 population-based controls. We followed-up prioritised variants in OA subjects from the interim release of the UK Biobank resource (up to 12 658 cases and 50 898 controls) and our lead finding in operated OA subjects from the full release of UK Biobank (17 894 cases and 89 470 controls). We investigated its functional implications in methylation, gene expression and proteomics data in primary chondrocytes from 12 pairs of intact and degraded cartilage samples from patients undergoing TJR.
Results We detect a genome-wide significant association at rs10116772 with TJR (P=3.7×10−8; for allele A: OR (95% CI) 0.97 (0.96 to 0.98)), an intronic variant in GLIS3, which is expressed in cartilage. Variants in strong correlation with rs10116772 have been associated with elevated plasma glucose levels and diabetes.
Conclusions We identify a novel susceptibility locus for OA that has been previously implicated in diabetes and glycaemic traits
Bivariate genetic modelling of the response to an oral glucose tolerance challenge: A gene x environment interaction approach
AIMS/HYPOTHESIS: Twin and family studies have shown the importance of genetic factors influencing fasting and 2 h glucose and insulin levels. However, the genetics of the physiological response to a glucose load has not been thoroughly investigated. METHODS: We studied 580 monozygotic and 1,937 dizygotic British female twins from the Twins UK Registry. The effects of genetic and environmental factors on fasting and 2 h glucose and insulin levels were estimated using univariate genetic modelling. Bivariate model fitting was used to investigate the glucose and insulin responses to a glucose load, i.e. an OGTT. RESULTS: The genetic effect on fasting and 2 h glucose and insulin levels ranged between 40% and 56% after adjustment for age and BMI. Exposure to a glucose load resulted in the emergence of novel genetic effects on 2 h glucose independent of the fasting level, accounting for about 55% of its heritability. For 2 h insulin, the effect of the same genes that already influenced fasting insulin was amplified by about 30%. CONCLUSIONS/INTERPRETATION: Exposure to a glucose challenge uncovers new genetic variance for glucose and amplifies the effects of genes that already influence the fasting insulin level. Finding the genes acting on 2 h glucose independently of fasting glucose may offer new aetiological insight into the risk of cardiovascular events and death from all causes
Meta-analysis of genome-wide association studies with correlated individuals: application to the Hispanic Community Health Study/Study of Latinos (HCHS/SOL)
Investigators often meta-analyze multiple genome-wide association studies (GWASs) to increase the power to detect associations of single nucleotide polymorphisms (SNPs) with a trait. Meta-analysis is also performed within a single cohort that is stratified by, e.g., sex or ancestry group. Having correlated individuals among the strata may complicate meta-analyses, limit power, and inflate Type 1 error. For example, in the Hispanic Community Health Study/Study of Latinos (HCHS/SOL), sources of correlation include genetic relatedness, shared household, and shared community. We propose a novel mixed-effect model for meta-analysis, “MetaCor , which accounts for correlation between stratum-specific effect estimates. Simulations show that MetaCor controls inflation better than alternatives such as ignoring the correlation between the strata or analyzing all strata together in a “pooled GWAS, especially with different minor allele frequencies (MAF) between strata. We illustrate the benefits of MetaCor on two GWASs in the HCHS/SOL. Analysis of dental caries (tooth decay) stratified by ancestry group detected a genome-wide significant SNP (rs7791001, p-value=3.66x10-8, compared to 4.67x10-7 in pooled), with different MAF between strata. Stratified analysis of BMI by ancestry group and sex reduced over-all inflation from λGC=1.050 (pooled) to λGC=1.028 (MetaCor). Furthermore, even after removing close relatives to obtain nearly uncorrelated strata, a naïve stratified analysis resulted in λGC=1.058 compare to λGC=1.027 for MetaCor
Global similarity with local differences in linkage disequilibrium between the Dutch and HapMap–CEU populations
The HapMap project has facilitated the selection of tagging single nucleotide polymorphisms (tagSNPs) for genome-wide association studies (GWAS) under the assumption that linkage disequilibrium (LD) in the HapMap populations is similar to the populations under investigation. Earlier reports support this assumption, although in most of these studies only a few loci were evaluated. We compared pair-wise LD and LD block structure across autosomes between the Dutch population and the CEU-HapMap reference panel. The impact of sampling distribution on the estimation of LD blocks was studied by bootstrapping. A high Pearson correlation (genome-wide; 0.93) between pair-wise
A Genome-wide Association Study of Dupuytren Disease Reveals 17 Additional Variants Implicated in Fibrosis
Individuals with Dupuytren disease (DD) are commonly seen by physicians and surgeons across multiple specialties. It is an increasingly common and disabling fibroproliferative disorder of the palmar fascia, which leads to flexion contractures of the digits, and is associated with other tissue-specific fibroses. DD affects between 5% and 25% of people of European descent and is the most common inherited disease of connective tissue. We undertook the largest GWAS to date in individuals with a surgically validated diagnosis of DD from the UK, with replication in British, Dutch, and German individuals. We validated association at all nine previously described signals and discovered 17 additional variants with p ≤ 5 × 10-8. As a proof of principle, we demonstrated correlation of the high-risk genotype at the statistically most strongly associated variant with decreased secretion of the soluble WNT-antagonist SFRP4, in surgical specimen-derived DD myofibroblasts. These results highlight important pathways involved in the pathogenesis of fibrosis, including WNT signaling, extracellular matrix modulation, and inflammation. In addition, many associated loci contain genes that were hitherto unrecognized as playing a role in fibrosis, opening up new avenues of research that may lead to novel treatments for DD and fibrosis more generally. DD represents an ideal human model disease for fibrosis research
- …
