36 research outputs found

    Uncoupling Time and Space in the Collinear Regulation of Hox Genes

    Get PDF
    During development of the vertebrate body axis, Hox genes are transcribed sequentially, in both time and space, following their relative positions within their genomic clusters. Analyses of animal genomes support the idea that Hox gene clustering is essential for coordinating the various times of gene activations. However, the eventual collinear ordering of the gene specific transcript domains in space does not always require genomic clustering. We analyzed these complex regulatory relationships by using mutant alleles at the mouse HoxD locus, including one that splits the cluster into two pieces. We show that both positive and negative regulatory influences, located on either side of the cluster, control an early phase of collinear expression in the trunk. Interestingly, this early phase does not systematically impact upon the subsequent expression patterns along the main body axis, indicating that the mechanism underlying temporal collinearity is distinct from those acting during the second phase. We discuss the potential functions and evolutionary origins of these mechanisms, as well as their relationship with similar processes at work during limb development

    Impaired skin wound healing in peroxisome proliferator–activated receptor (PPAR)α and PPARβ mutant mice

    Get PDF
    We show here that the α, β, and γ isotypes of peroxisome proliferator–activated receptor (PPAR) are expressed in the mouse epidermis during fetal development and that they disappear progressively from the interfollicular epithelium after birth. Interestingly, PPARα and β expression is reactivated in the adult epidermis after various stimuli, resulting in keratinocyte proliferation and differentiation such as tetradecanoylphorbol acetate topical application, hair plucking, or skin wound healing. Using PPARα, β, and γ mutant mice, we demonstrate that PPARα and β are important for the rapid epithelialization of a skin wound and that each of them plays a specific role in this process. PPARα is mainly involved in the early inflammation phase of the healing, whereas PPARβ is implicated in the control of keratinocyte proliferation. In addition and very interestingly, PPARβ mutant primary keratinocytes show impaired adhesion and migration properties. Thus, the findings presented here reveal unpredicted roles for PPARα and β in adult mouse epidermal repair

    A systematic enhancer screen using lentivector transgenesis identifies conserved and non-conserved functional elements at the olig1 and olig2 locus

    Get PDF
    Finding sequences that control expression of genes is central to understanding genome function. Previous studies have used evolutionary conservation as an indicator of regulatory potential. Here, we present a method for the unbiased in vivo screen of putative enhancers in large DNA regions, using the mouse as a model. We cloned a library of 142 overlapping fragments from a 200 kb-long murine BAC in a lentiviral vector expressing LacZ from a minimal promoter, and used the resulting vectors to infect fertilized murine oocytes. LacZ staining of E11 embryos obtained by first using the vectors in pools and then testing individual candidates led to the identification of 3 enhancers, only one of which shows significant evolutionary conservation. In situ hybridization and 3C/4C experiments suggest that this enhancer, which is active in the neural tube and posterior diencephalon, influences the expression of the Olig1 and/or Olig2 genes. This work provides a new approach for the large-scale in vivo screening of transcriptional regulatory sequences, and further demonstrates that evolutionary conservation alone seems too limiting a criterion for the identification of enhancers

    Hox genes in digit development and evolution

    No full text
    Homeobox genes located in the 5’ part of the HoxA and HoxD complexes are required for proliferation of skeletal progenitor cells of the vertebrate limb. Specific combinations of gene products determine the length of the upper arm (genes belonging to groups 9 and 10), the lower arm (groups 10, 11 and 12) and the digits (groups 11, 12 and 13). In these different domains, individual gene products quantitatively contribute to an overall protein dose, with predominant roles for groups 11 and 13. Quantitative reduction in the gene dose in each set results in truncations of the corresponding anatomical regions. The physical order of the genes in the HoxA and HoxD complexes, as well as a unidirectional sequence in gene activation, allow for completion of the process in a precise order, which in turn makes possible the sequential outgrowth of the respective primordia. While the skeletal patterns of upper and lower limb are relatively stable throughout the tetrapods, more variation is seen in the digits. Molecular analysis of the underlying regulatory processes promises further exciting insights into the genetic control of development, pathology and the course of evolution

    A Genetic Basis for Altered Sexual Behavior in Mutant Female Mice

    Get PDF
    SummaryAlthough neural substrates of mammalian female mating behavior have been described [1, 2], the association between complex courtship activity and specific underlying mechanisms remains elusive [3]. We have isolated a mouse line that unexpectedly shows altered female social behavior with increased investigation of males and increased genital biting. We investigated adult individuals by behavioral observation and genetic and molecular neuroanatomy methods. We report exacerbated inverse pursuits and incapacitating bites directed at the genitals of stud males. This extreme deviation from wild-type female courtship segregates with a deletion of the Hoxd1 to Hoxd9 genomic region. This dominant Atypical female courtship allele (HoxDAfc) induces ectopic Hoxd10 gene expression in several regions in newborn forebrain transitorily and stably in a sparse subpopulation of cells in the cornu ammonis fields of adult hippocampus, which may thus lead to an abnormal modulation in the sexual behavior of mutant females. The resulting compulsive sexual solicitation behavior displayed by the most affected individuals suggests new avenues to study the genetic and molecular bases of normal and pathological mammalian affect and raises the potential involvement of the hippocampus in the control of female courtship behavior. The potential relevance to human 2q.31.1 microdeletion syndrome [4, 5] is discussed.Video Abstrac

    Rescue of an aggressive female sexual courtship in mice by CRISPR/Cas9 secondary mutation in vivo

    No full text
    Abstract Objective We had previously reported a mouse line carrying the Atypical female courtship (HoxD Afc ) allele, where an ectopic accumulation of Hoxd10 transcripts was observed in a sparse population of cells in the adult isocortex, as a result of a partial deletion of the HoxD gene cluster. Female mice carrying this allele displayed an exacerbated paracopulatory behavior, culminating in a severe mutilation of the studs’ external genitals. To unequivocally demonstrate that this intriguing phenotype was indeed caused by an illegitimate function of the HOXD10 protein, we use CRISPR/Cas9 technology to induce a microdeletion into the homeobox of the Hoxd10 gene in cis with the HoxD Afc allele. Results Females carrying this novel HoxD Del(1–9)d10hd allele no longer mutilate males. We conclude that a brain malfunction leading to a severe pathological behavior can be caused by the mere binding to DNA of a transcription factor expressed ectopically. We also show that in HoxD Afc mice, Hoxd10 was expressed in cells containing glutamate decarboxylase (Gad1) and Cholecystokinin (Cck) transcripts, corroborating our proposal that a small fraction of GABAergic neurons in adult hippocampus may participate to some aspects of female courtship

    A function for all posterior Hoxd genes during digit development?

    No full text
    Background: Four posterior Hoxd genes, from Hoxd13 to Hoxd10, are collectively regulated during the development of tetrapod digits. Besides the well-documented role of Hoxd13, the function of the neighboring genes has been difficult to evaluate due to the close genetic linkage and potential regulatory interferences. We used a combination of five small nested deletions in cis, involving from two to four consecutive genes of the Hoxd13 to Hoxd9 loci, in mice, to evaluate their combined functional importance. Results: We show that deletions leading to a gain of function of Hoxd13, via regulatory re-allocation, generate abnormal phenotypes, in agreement with the dominant negative role of this gene. We also show that Hoxd10, Hoxd11, and Hoxd12 all seem to play a genuine role in digit development, though less compelling than that of Hoxd13. In contrast, the nearby Hoxd9 contributed no measurable function in digits. Conclusions: We conclude that a slight and transient deregulation of Hoxd13 expression can readily affect the relative lengths of limb segments and that all posterior Hoxd genes likely contribute to the final limb morphology. We discuss the difficulty to clearly assess the functional share of individual genes within such a gene family, where closely located neighbors, coding for homologous proteins, are regulated by a unique circuitry and all contribute to shape the distal parts of our appendages. Developmental Dynamics 241:792-802, 2012. © 2012 Wiley Periodicals, Inc

    Control of Colinearity in <i>AbdB</i> Genes of the Mouse <i>HoxD</i> Complex

    No full text
    During development, vertebrate Hox genes are activated in a temporal and spatial sequence colinear with the position of the genes within their clusters. To investigate the mechanistic basis of this phenomenon, we used the ES cell technology and the loxP/Cre system to engineer a conditional fusion of the 5′ exon of Hoxd-13 with the 3′ exon of Hoxd-12. This hybrid transcription unit was regulated like Hoxd-11, with expression limits in the trunk, limbs, intestinal, and urogenital systems more anterior than those expected for either Hoxd-13 or Hoxd-12. An in vivo interspecies replacement by the fish homologous DNA fragment showed that anteriorization was not due to a distance effect, thus suggesting the presence of a regulatory element between Hoxd-13 and Hoxd-12 that may contribute to the establishment, early on, of a repressive state over these two genes
    corecore