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Summary

Although neural substrates of mammalian female mating

behavior have been described [1, 2], the association
between complex courtship activity and specific underlying

mechanisms remains elusive [3]. We have isolated a mouse
line that unexpectedly shows altered female social behavior

with increased investigation of males and increased genital
biting. We investigated adult individuals by behavioral

observation and genetic and molecular neuroanatomy
methods. We report exacerbated inverse pursuits and inca-

pacitating bites directed at the genitals of stud males. This
extreme deviation from wild-type female courtship segre-

gates with a deletion of the Hoxd1 to Hoxd9 genomic region.
This dominant Atypical female courtship allele (HoxDAfc)

induces ectopic Hoxd10 gene expression in several regions
in newborn forebrain transitorily and stably in a sparse

subpopulation of cells in the cornu ammonis fields of adult
hippocampus, which may thus lead to an abnormal modula-

tion in the sexual behavior of mutant females. The resulting

compulsive sexual solicitation behavior displayed by the
most affected individuals suggests new avenues to study

the genetic and molecular bases of normal and pathological
mammalian affect and raises the potential involvement of the

hippocampus in the control of female courtship behavior.
The potential relevance to human 2q.31.1 microdeletion

syndrome [4, 5] is discussed.

Results

During the production of a stock of mice carrying a targeted
microdeletion within the HoxD gene cluster, including from
theHoxd1 gene toHoxd9 (Del1–9), we observed that heterozy-
gous females displayed aberrant courtship behavior, trans-
mitted to their offspring for at least ten generations. Progenies
were rarely observed in harems with more than one such
female. Instead, the male external genitals became selectively
and severely wounded (see Figure S1A available online), such
that mating had to be stopped. We analyzed full-night video
recordings and witnessed females chasing males assiduously
(see Movies S1, S2, and S3). In the course of such inverse
pursuits, they often bit the genitals, very specifically, while
the hind paws of themale were off the floor (Figure 1A). Inverse
pursuits involving such bites were directed at males exclu-
sively, never at bystander females. Such apparent aggressive
behavior was surprising, because in cages of group-housed
males or females of this line, we did not observe fighting or
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mutilations over a period of several years. Furthermore, the
overall pattern of behavior did not fit descriptions either of
species specific aggressive postures characteristic of mice
[6] or of the pathological aggressiveness described for male
and female fierce mouse mutant [7]. We carefully observed
when females physically contacted the ano-genital regions
of males, by video recording groups of two to four females
caged with a male using visual tracking, which allowed quan-
titative individual scoring. We found that females often ap-
proached the males from behind and sniffed their tail and the
ano-genital region while following them along. This was seen
with wild-type (WT) females and was more frequent during
the night of sexual receptivity. Therefore, we scored for the
timing and length of all ano-genital investigation episodes in
time-lapse recordings of WT, Del4–9, Del1–10, and Del1–9
females when caged with adult males. In cages of two harems
of four females housed together with a male during several
days, we found that in case of controls, ano-genital investiga-
tions were rare and the total time spent in this occupation
rarely added up to more than a few dozens of seconds per
night, when the female was not receptive (Figure S1B). On
the night of sexual receptivity, the number of instances and
the total time spent in ano-genital investigations increased to
around 100 s in case of both control females and a minority
of Del1–9 females. We considered this increase in male
seeking behavior as part of the normal courtship of female
laboratory mice. The incidence and total span of ano-genital
investigation increased dramatically on the night of receptivity,
in case of the majority of Del1–9 females, taking the form of
inverse pursuits alternating with sexual intercourses and sug-
gesting that in these mutant females the courtship activity was
severely exacerbated. Chased males could be of any geno-
type, including WT and, surprisingly, they did not display any
aggressive behavior, even after their genital region was
mutilated.
We quantified selected aspects of the female courtship

behavior on the night of receptivity in order to numerically
compare this abnormal strain with control animals (Table 1).
Twelve out of 18 (see Table 1) Del1–9 mutant mice showed
excessive physical contacts, which we scored as lift and/or
bite. In contrast, a single such frame among the 19 mating
control females was found depicting a WT female engaging
in such a lift and/or bite behavior. This difference was statisti-
cally significant and thus confirmed the causal role of the
Del1–9 mutant females in male mutilations. Due to the short
duration of the lifts, the count of such episodes, which were
embedded in sequences of ano-genital investigations, was
underestimated at least 4-fold, when recorded in time-lapse
mode (see Figure S1C). Del1–9 females initiated a higher
number of ano-genital investigations, and the total time spent
in this activity was also significantly longer, on average (Table
1). A minority of Del1–9 females were scored normal by all
behavioral observation criteria (see also Figures S1B and
S1D). Thiscould indicate theeffectofpresentlynoninvestigated
genetic modifiers or physiological variation in the expressivity
of the phenotype. Surprisingly, a number of Del1–9 females
were involved in a significantly higher number of actual copula-
tions, as signaled by the higher count of lordosis episodes. In
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Figure 1. Heritable Atypical Female Courtship

in Mice

(A) A female in the course of ano-genital contact

with a stud male (black coat color), with his hind

legs lifted up.

(B) Plots of timing and length of ano-genital

investigations and copulations (red diamonds

and green circles, respectively), comparing a

WT female (top) and a HoxDAfc mutant female

(bottom) during an entire night, based on time-

lapse video recordings. Two dark diamonds at

the bottom indicate lift and/or bite episodes

similar to that depicted in (A). Note the enhanced

frequency of investigations by themutant female,

in particular after copulations had occurred (see

also Movies S1, S2, and S3).

(C) Schematic representation of the alleles

used in this study, with the WT gene cluster on

the top and the various deletions below:

Del1–13 [8], Del1–10 [9], Del1–9 (alias HoxDAfc),

and Del4–9 [28]. All stocks are maintained by

serial backcrossing of heterozygous males

to (Bl6/CBA)F1 females to keep comparable

heterogeneity in genetic backgrounds over generations. Only Del1–9 shows ectopic expression of Hoxd10 (in red) in forebrain.

Detailed description of digital video recordings, allele structure, and derivation are provided in Supplemental Experimental Procedures. The Del1–9

(alias HoxDAfc) novel allele was produced using the TAMERE breeding protocol [29] using Del1–13 and 10–9flox [30] allele. See also Figure S1.
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course of these extended copulation sequences, it was the
female that approached the male immediately preceding the
mounts. Overall, the ano-genital investigation episodes
primarily occurred prior to copulations in case of controls,
whereas most Del1–9mutants continued inverse pursuits after
copulationbouts aswell (Figure 1B, FigureS1D).We concluded
to a case of altered social behavior with increased investigation
of males and increased genital biting, aspects of female court-
ship that amounted to sexual harassment.We refer to this allele
as Atypical female courtship (HoxDAfc).

Because this phenotype involved complex cognitive pro-
cesses and nonadaptive goal directed behaviors, we expected
an anomaly in either the structure or the physiology of the
forebrain. Because the HoxDAfc condition is dominant and
because Hox genes are normally not functional and poorly
expressed there, if at all, we suspected a gain of function
to cause this phenotype. Also, mice carrying the related
Del1–13 and Del1–10 deletions (Figure 1C) did not display
this anomaly, after more than ten years of nonstop breeding
[8, 9]. Because the only difference between Del1–9 and
Del1–10 is the presence ofHoxd10 at the former locus, we pre-
dicted that ectopic expression of Hoxd10 in forebrain was
involved. We first looked for Hoxd10 transcripts accumulation
by in situ hybridization in HoxDAfc newborns by using the
related yet phenotypically silent Del4–9 allele as control.
Both Del1–9 and Del4–9 deletions induced similar ectopic
expression of Hoxd10 in the hindbrain (data not shown). In
midbrain and forebrain, however, ectopic Hoxd10 transcripts
were only found in Del1–9 (HoxDAfc) (Figure 2A) mice and
neither in Del4–9, nor in WT control animals (Figure 2B).
Several regions of ectopic expression were observed and
appeared of special interest in the context of the above-
described phenotype, such as, for example, nuclei in habenula
and the amygdala. This suggested that the Afc phenotype was
associated with ectopic Hoxd10 transcription either in fore-
brain or in midbrain.

Because the phenotypic anomaly is selectively expressed
during adulthood in females, and in order to better discrimi-
nate between involvement of these various regions of ectopic
expression, we investigated the adult brain. First, areas
expressing robust levels of ectopic Hoxd10 during develop-
ment appeared grossly normal in adults, suggesting that
brains of mutant animals were largely unaffected at a gross
structural level, consistent with the apparently normal
behavior of HoxDAfc females beside this severe mating
anomaly. Second, although a few labeled cells were seen in
the amygdala, ectopic expression of Hoxd10 was no longer
detected in the rest of forebrain regions positive in newborns.
Instead the vast majority of cells ectopically expressing
Hoxd10was in the hippocampus of HoxDAfcmutant forebrains
(Figure 2D). There again, Hoxd10 positive cells were not
scored in control forebrains carrying the Del4–9 allele, neither
in the amygdala nor in the hippocampus. This confirmed our
prediction based on the genomic structure of our allelic series
and further supported the correlation showing abnormal gene
regulation in adult forebrain when the behavioral phenotype is
manifest. In the adult Afc brain, most Hoxd10-positive cells
were selectively located in the cornu ammonis (CA) fields,
with, in CA1, about 15% of the cells localized within the
principal pyramidal cell layer, whereas the remaining positive
cells were in the neighbor layers. Because this distribution
resembled the localization of cells expressing glutamic acid
decarboxylase (Gad1; Figure 2E), it raised the possibility
that Hoxd10 was ectopically expressed in CA nonprincipal
GABAergic neurons [10].

Discussion

In contrast to the vast majority of heritable pathological behav-
iors described in the laboratorymouse, theHoxDAfcphenotype
we report here follows a gender-specific inheritance pattern.
This suggests that the affected mechanism underlies a
female-specific behavior. Control females of these stocks
expectedly approach males more frequently when they are in
proestrous, rather than when in other phases of the estrous
cycle. These approaches include intimate ano-genital investi-
gations. The courtship displayed by HoxDAfc mice also follows
this temporal dynamics, yet it seems largely exaggerated
and uncontrolled. These females indeed recognize the male
and display proceptive behaviors [11], but they appear



Table 1. Results of Overnight Time-Lapse Observations of Female Sexual

Behaviora

WT,+/+

(n = 9)

Del4–9/+

(n = 5)

Del1–10/+

(n = 5)

Del1–9/+

(n = 18)

Lift and/or bite

episodesb
1/9 0/5 0/5 12/18e

Count, averagec 1* 0 0 3.8 6 1

Ano-genital

investigationsb
9/9 5/5 5/5 18/18

Count, maximum 93 62 32 345

Count, minimum 1 5 6 34

Count, averagec 46.2 6 12 35.6 6 11 16.4 6 5 119.2 6 21f

Total span,

averaged
95.6 6 19 111.2 6 29 43.8 6 10 311.2 6 60g

Lordosis responseb 9/9 5/5 5/5 18/18

Count, maximum 41 36 27 107

Count, minimum 3 2 5 2

Count, averagec 17.5 6 5 10.8 6 6 17.8 6 5 31.0 6 7h

Total span,

averaged
348.4 6 87 171.6 6 61 240.4 6 67 306.46 37i

Plugsb 5/9 2/5 5/5 13/18

Rejected mountsc 12.3 6 5 7.6 6 5 6.8 6 2 13.6 6 3j

aThirty-seven females recorded on the night of sexual receptivity, grouped

by HoxD genotype.
bNumber of mice, which showed that particular behavior over total.
cNumber of episodes by mice, which showed that particular behavior,

mean 6 SEM. * represents a single case.
dSum of length of all episodes in s, mean 6 SEM.
eChi-square test: Yates, with Bonferroni correction (n = 15): p < 0.006Del1–9

vs. all other groups combined.
fANOVA after log transformation to stabilize the variance, p < 0.0009. Post

hoc t tests assuming equal variances with Bonferroni correction (n = 15):

p<0.001 for Del1–9 vs. all other groups combined. The rest of the pairwise

comparisons were not statistically significant (p >> 0.05).
gANOVA after log transformation to stabilize the variance, p < 0.0006.

Posthoc t tests assuming equal variances, with Bonferroni correction

(n = 15): p<0.001 for Del1–9 vs. all other groups combined; p < 0.04 for

Del1–9, vs. WT. The rest of the pairwise comparisons were not statistically

significant (p >> 0.05).
hANOVA after log transformation to stabilize the variance, p = 0.08.
iANOVA after log transformation to stabilize the variance, p = 0.2.
jANOVA after log transformation to stabilize the variance, p = 0.6.
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hyperreactive, suggesting defective behavioral inhibition, as
illustrated by the frequency of both inverse pursuits and tactile
stimulation directed at the external genitals.

Although mouse females’ proceptive behavior is not well
documented, some reports mention that rodent females
actively contribute to mating [12]. A common element among
various species is a form of approach behavior, where the
female establishes physical proximity to the male [13, 14].
There is also experimental evidence indicating that female
mice actively control the pace of sexual intercourses [15].
Furthermore, tactile stimulation was recognized to be part
of the courtship routine in diverse female mammals [14, 16].
In the courtship behavior of HoxDAfc females, both alternating
approaches and withdrawals and physical contact responses
show compulsive exaggeration in the most affected
individuals.

Hox genes are believed to have no function in neuroecto-
derm derived cells in forebrain [17, 18]. They encode transcrip-
tion factors and are selectively repressed throughout the
midbrain and forebrain of all vertebrates. Remarkably, we
found ectopic expression of the Hoxd10 gene in diverse
regions of the developing forebrain in Del1–9 (HoxDAfc)
newborns. Later, in adult, expression was maintained only in
a few cells in the basomedial amygdala, and a new domain
of ectopic expression appeared in the hippocampus. Conse-
quently, the phenotype we describe could be related to two
distinct deleterious effects of Hoxd10 in the brain. In the first
scenario, an early gain of function ofHoxd10 in the brain would
eithermodify the structure or the differentiation of somenuclei,
inducing a stable functional modification leading to behavioral
alteration 2 months later. In the second scenario, the Afc
phenotype is triggered by ectopic expression of Hoxd10 in
hippocampus in adult brain. Because any ectopic expression
domain persistent in adult brain would be more likely to inter-
fere with the very dynamic physiological status of mutant
females we favored the second hypothesis and thus concen-
trated on ectopic Hoxd10 expression in adult brain. There,
Hoxd10 was observed in rare cells in CA, reminiscent of the
cytoarchitectonic distribution of nonprincipal GABAergic
neurons. Therefore, in the case of HoxDAfc, we hypothesize
that the ectopic presence of this HOX protein in forebrain,
i.e., cells that normally never experience it, may trigger impor-
tant changes in the implementation of their genetic program. It
is indeed well documented that proteins like HOXD10 can
exert a dominant-negative effect in many contexts [19]. In
this particular case, it may impinge upon the capacity of these
cells to modulate behavioral responses, thereby leading to the
observed exacerbation of an innate behavior.
Although the mechanisms underlying both the specific gain

of function of Hoxd10 in this cell type and the rational for its
deleterious effect remain elusive, some elements suggest
avenues to further investigate. First, the Afc phenotype selec-
tively affects Del1–9 females, even though heterozygous adult
males also display ectopic expression in CA nonprincipal cells.
This may relate to the fact that the altered behavior is already
gender-specific under normal circumstances. In fact, the
acute phase of this behavioral anomaly occurs during proes-
trous, a phase known to induce complex modifications in the
female rodent hippocampus [20], including global changes in
transcription [21]. The presence of ectopic HOXD10 may inter-
fere with these complex hormonal regulations. During female
courtship, some cells in CA may contribute to the modulation
of courtship behavior, restricting both its amplitude and its
occurrence to the preovulatory period. In this view, the Afc
condition may illustrate the role of the hippocampus in ‘‘states
of emotion, especially disappointment and frustration,’’ that
was suggested nearly half a century ago [22, 23].
Finally, this correlation between the ectopic presence of

a transcription factor, as a consequence of copy number vari-
ation, and abehavioral anomaly further illustrates that genomic
rearrangements can lead to pathologically significant gain of
function, rather than to mere haplo insufficiencies [24]. It is
conceivable that microdeletions or altered epigenetic mecha-
nisms [25] at this or other loci may induce brain malfunction,
including pathological behaviors due to ectopic expression of
normally silent genes. The possibility also exists that the
genomic region, which lies between the centromeric break-
point of Del1–9 and that of Del1–10 contains regulatory
elements that, in the mutant condition, would misregulate
the expression of other, yet-to-be-identified locus, besides
Hoxd10. In this view, the Del1–9 allele would generate a gain
of function of an unknown gene unrelated to the Hox gene
family. However, we do not favor this hypothesis, which would
involve thepresenceof analternative target gene locatedeither
in trans or in cis, but far away. In humans, the 2q31.1 syntenic
HoxD-containing locus is a target of multiple deletions, dupli-
cations or inversions. Patients display a range of anomalies



Figure 2. Ectopic Expression of Hoxd10 in

Newborn and Adult Brain

(A) A coronal section of a heterozygous HoxDAfc

newborn female head, hybridized with Hoxd10-

specific probe. Note that many cells in the Gasser

ganglion at the base of the skull and broad

domains in forebrain, including parts of the cortex

and the diencephalon, show blue staining due to

ectopic accumulation of Hoxd10 transcripts.

(B) A neighbor section of the same heterozygous

HoxDAfc newborn female head, stained with

Cresyl violet. A few landmark structures are anno-

tated both in (A) and (B). (A, amygdala; Ggl,

Gasser ganglion; Hb, habenula; Hi, hippocampus;

Th, thalamus; Vmh, ventromedial hypothalamic

nucleus.)

(C) In situ hybridization showing a comparable

coronal section of a WT newborn female head.

Blue staining was absent both in Gasser ganglion

and in brain.

The blue signal in the neck region seen in both

cases was due to endogenous alkaline phospha-

tase activity that was also detected in the

absence of antisense riboprobe. Both sections were processed simultaneously in the same hybridization experiment, scanned at the same settings,

and mounted and modified together in Photoshop to set curves, levels, brightness, and contrast simultaneously, to ensure comparable sensitivity of

visualization.

(D) Details of in situ hybridization showing the CA1 fields of a heterozygous adult HoxDAfc female brain, hybridized with the Hoxd10 antisense riboprobe.

(E) Details of in situ hybridization showing the CA1 fields of an adult heterozygous HoxDAfc female brain, hybridized with theGad1 antisense riboprobe. Rare

positive cells are detected by blue chromogene NBT/BCIP (appearing light-brown due to dark-field illumination; sr, sp, so, strata radiatum, pyramidale, and

oriens, respectively).

Detailed description of brain sections, probes and hybridization methods are given in Supplemental Experimental Procedures. See also Figure S2.
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related to those scored in this mutant Afc stock, including
craniofacial and limb malformations, neural symptoms, and
growth retardation [4, 5]. Pathological sexual behavior, how-
ever, has not yet been reported in 2q.31.1 microdeletion
patients. In mice, however, none of the many engineered dele-
tions at this locus [26], but the Del1–9, was ever reported to
show this abnormal behavior, which emphasizes the impor-
tance of this very breakpoint, not yet found in a human condi-
tion. As it stands, the Afc phenotype we report in this paper
may be closer to other human conditions like complex psycho-
motor temporal lobe epilepsy or Kluver Bucy syndrome [27].

Experimental Procedures

Detailed description of behavioral observations, graphical representations,

in situ hybridization analyzes are provided in Supplemental Information.

Experimental procedures involving animals were carried under proper

authorization and according to Swiss law on animal protection.

Supplemental Information

Supplemental Information includes two figures, Supplemental Experimental

Procedures, and three movies and can be found with this article online at

http://dx.doi.org/10.1016/j.cub.2012.06.067.
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