11 research outputs found

    Energy efficient smart street light for smart city using sensors and controller

    Get PDF
    Smart street light is an intelligent control of street lights to optimize the problem of power consumption of the street, late in night. Conventional street lights are being replaced by Light Emitting Diode (LED) street lighting system, which reduces the power consumption. The focus of this project is to design a system of street lights controller to provide a reduction in power consumption. The prototype was designed by using Light Dependent Resistor (LDR), Infrared sensor (IR), battery and LED. The brightness of the lamps is being controlled in this project to reduce the power consumption. The dimming of the lamps depends on the speed of object motion detected such as pedestrians, cyclists and cars. The higher speed of moving object, the greater the level of intensity. For this idea, the innovation of street lights is not quite the same as conventional street lights that are controlled by timer switch or light sensor which automatically turns light on during sunset and off during sunrise. According to the study, motion detection devices may help to save up to 40% of energy per month

    Smart street light using intensity controller

    Get PDF
    Smart street light is an intelligent control of street lights to optimize the problem of power consumption of the street, late in night. Currently, usual street lights are automatically turn on when it becomes dark and turn off when it becomes bright. This is huge waste of energy in the entire world as it is an essential community service, but current implementation is not efficient. Conventional street lights are being replaced by Light Emitting Diode (LED) street lighting system, which reduces the power consumption. The focus of this project is to design a system of street lights controller to provide a reduction in power consumption. The prototype is design by using Light Dependent Resistor (LDR), Infrared sensor (IR), battery and LED. All this component was controlled by Arduino UNO as the microcontroller. The brightness of the lamps is being controlled in this project to reduce the power consumption. The dimming of the lamps depends on the speed of object motion detected such as pedestrians, cyclists and cars. The higher speed of moving object, the greater the level of intensity. For this idea, the innovation of street lights is not quite the same as conventional street lights that are controlled by timer switch or light sensor which automatically turns the street lights on during sunset and off during sunrise. According to the study, motion detection devices may help to save up to 40% of energy per month

    Classification of different types of metal from recyclable household waste for automatic waste separation system

    Get PDF
    Nowadays, solid waste has become a major problem in Malaysia. However, most people in Malaysia are not aware and take this problem for granted. The rising number of population and massive development in recent years indirectly generated an enormous value of household waste, making the household waste the main generator for solid waste in Malaysia. It stated that only 5 percent of an average 30,000 tons of waste have been recycled in Malaysia. The purpose of the paper is to design a system to separate the metal recyclable household waste automatically and record the data waste collected. There are total of four detectors used to separate the non-metal, steel, copper and aluminum metal waste. The average time used to complete metal separation process by using the proposed prototype is 14.5 seconds. This paper includes a mechanical part, programming part, an electronic design and also the data collected from this proposed system. The system will be programmed using Arduino Mega as a microcontroller to control all the electronic component in the system

    Material classification of recyclable waste using the weight and size of waste

    Get PDF
    Nowadays, insufficient landfills problem had increased the needs to decrease the waste and recycling them. However, despite the efforts done by the government and local authorities on promoting recycling culture by introducing new laws and regulations, the awareness and willingness among the community is still low. One of the possible reasons to this is lack of effort to categorize the waste into the designated category which are paper, glass, plastic and metal. In order to address this problem, it is important to design a system that will ease the process of categorizing the waste. This can be achieve by the automation of the said process. In this work, a system consist of an algorithm and hardware to automatically categorize recyclable waste is proposed. The proposed system are utilizing weight sensor and ultrasonic sensors in order to capture the characteristics of the waste item, which are weight and size so that it can be categorized into paper, glass, plastic and metal. Here, an algorithm to compensate minimum usage of hardware, namely the type and number of sensors is presented

    Automatic metal waste separator system in Malaysia

    Get PDF
    Metal recycling is an issue that needs attention and should be practiced by people as it has many advantages to human and Earth. In order to get a metal from Earth, the process called mining are needed where it can harm our natural resources due to depletion of the area to be mined. If the process is not controlled, most of the areas on Earth will have huge excavation holes. So, people should be responsible to prevent this from happening to preserve the environment in a good quality by recycling the metal material. By metal recycling, it can save an energy and resources as it can reduce the demand for raw materials, hence maintain the natural resources for the future. The proposed automatic metal waste separation system is intended to ease the people to separate the waste material. Besides, it will make the metal recycling industry work easier because the metal waste is already isolated at garbage collection side. The purpose of the project is to design a system to separate the metal recyclable household waste automatically and record the data waste collected. There are total of four detectors used to separate the non-metal, steel, copper and aluminum metal waste. The average time used to complete metal separation process by using the proposed prototype is 14.5 seconds. This project includes a mechanical part, programming part and an electronic design. The system will be programmed using Arduino Mega as a microcontroller to control all the electronic component in the system

    Design of smart waste bin and prediction algorithm for waste management in household area

    Get PDF
    Maintaining current municipal solid waste management (MSWM) for the next ten years would not be efficient anymore as it has brought many environmental issues such as air pollution. This project has proposed Artificial Neural Network (ANN) based prediction algorithm that can forecast Solid Waste Generation (SWG) based on household size factor. Kulliyyah of Engineering (KOE) in International Islamic University Malaysia (IIUM) has been chosen as the sample size for household size factor. A smart waste bin has been developed that can measure the weight, detect the emptiness level of the waste bin, stores information and have direct communication between waste bin and collector crews. This study uses the information obtained from the smart waste bin for the waste weight while the sample size of KOE has been obtained through KOEโ€™s department. All data will be normalized in the pre-processing stage before proceeding to the prediction using Visual Gene Developer. This project evaluated the performance using R2 value. Two hidden layers with five and ten nodes were used respectively. The result portrayed that the average rate of increment of waste weight is 2.05 percent from week one until week twenty. The limitation to this study is that the amount of smart waste bin should be replicated more so that all data for waste weight is directly collected from the smart waste bin

    Neural network prediction for efficient waste management in Malaysia

    Get PDF
    Maintaining current municipal solid waste management (MSWM) for the next ten years would not be efficient anymore as it has brought many environmental issues such as air pollution. This project has proposed Artificial Neural Network (ANN) based prediction algorithm that can forecast Solid Waste Generation (SWG) based on population growth factor. This study uses Malaysian population as sample size and the data for weight is acquired via authorized Malaysia statisticsโ€™ websites. All data will be normalized in the pre-processing stage before proceeding to the prediction using Visual Gene Developer. This project evaluated the performance using R2 value. Two hidden layers with ten and five nodes were used respectively. The result portrayed that there will be an increase of 29.03 percent of SWG in year 2031 compared to 2012. The limitation to this study is that the data was not based on real time as it was restricted by the government

    Energy efficient smart street light for smart city using sensors and controller

    Get PDF
    Smart street light is an intelligent control of street lights to optimize the problem of power consumption of the street, late in night. Conventional street lights are being replaced by Light Emitting Diode (LED) street lighting system, which reduces the power consumption. The focus of this project is to design a system of street lights controller to provide a reduction in power consumption. The prototype was designed by using Light Dependent Resistor (LDR), Infrared sensor (IR), battery and LED. The brightness of the lamps is being controlled in this project to reduce the power consumption. The dimming of the lamps depends on the speed of object motion detected such as pedestrians, cyclists and cars. The higher speed of moving object, the greater the level of intensity. For this idea, the innovation of street lights is not quite the same as conventional street lights that are controlled by timer switch or light sensor which automatically turns light on during sunset and off during sunrise. According to the study, motion detection devices may help to save up to 40% of energy per mont

    Design of circular inductive pad couple with magnetic flux density analysis for wireless power transfer in EV

    Get PDF
    As the population grows, people will consume more natural resources. This issue will lead to a low petrol supply for all land transportation, especially supplies for car consumption. Therefore, the electric vehicle (EV) has been introduced to overcome this issue. Currently, wired charging of EVs has been implemented in most of the developed country, including Malaysia. However, some drawbacks have been found from this technology. Therefore, wireless charging comes into the picture to solve this issue. Charging pad on the road and at the car are required for both wired and wireless charging. Various designs of charging pad are available. However, this paper will only focus on the circular design. There is many software that can be used to design the coil pad. Each software has a different procedure and steps to design the coil pad. In this paper, JMAG Designer software will be used to design the circular coil pad. Then, three coil pair were simulated using JMAG Designer to investigate the magnetic flux density between primary and secondary coil when varying the misalignment of 0 cm, 4 cm and 8 cm. From the simulation, there is no specific trend in the relationship between magnetic flux density and misalignment

    Investigation of magnetic properties for different coil sizes of dynamic wireless charging pads for electric vehicles (EV)

    No full text
    : Electric vehicles (EV) have been introduced in the recent years due to public awareness of the effect of gas emission from traditional cars and the extinction of petroleum natural resources. For charging EV, dynamic wireless charging is considered in this paper. This is because it is more convenient and saves charging time since it charges the electric vehicle while moving. The main challenge of this process is to maintain a high amount of power transfer from primary to secondary coil. One of the factors contributing to a good power transfer is the size of the coil [1]. There are various designs of coil for wireless charging of electric vehicles (EV). Among the most common designs are circular pad (CP), rectangular pad (RP), double-D pad (DDP), and double-D quadrature pad (DDQP). In this paper, circular pad (CP) is chosen for use, due to its simplicity in design and good electrical and magnetic properties. Three different coil pair sizes are tested to find the most suitable coil pair for the primary and secondary pads that has the maximum power transfer and is least sensitive to misalignment. The magnetic properties have been investigated to obtain the highest value of magnetic flux. The geometry design of the pads and simulation was done using COMSOL Multiphysics software. From the simulation, it was found that the unsymmetrical coil pair gives high magnetic strength when the outer diameters of the primary and secondary coils have the same value. ************************************************************************* Kenderaan Elektrik (EV) telah diperkenalkan sejak beberapa tahun ini hasil kesedaran awam tentang kesan pembebasan gas dari kenderaan lama dan pengurangan sumber asli petroleum. Kajian ini berkaitan pengecas dinamik tanpa wayar bagi mengecas EV. Ini kerana pengecas ini lebih sesuai dan jimat masa mengecas kerana kenderaan elektrik dicas ketika bergerak. Cabaran utama proses ini adalah mengekalkan pemindahan tenaga yang tinggi daripada gegelung primer kepada gegelung sekunder. Salah satu faktor bagi mendapatkan pemindahan tenaga yang tinggi adalah saiz gegelung wayar [1]. Terdapat pelbagai bentuk gegelung bagi mengecas kenderaan elektrik (EV) tanpa wayar. Antaranya adalah pad membulat (CP), pad segiempat tepat (RP), pad berganda-D (DDP), dan pad kuadratur berganda-D (DDQP). Kajian ini telah menggunakan pad membulat (CP) kerana reka bentuknya yang ringkas dan ia mempunyai sifat elektrikal dan magnatik yang baik. Tiga pasang gegelung berbeza telah diuji bagi mendapatkan pasangan gegelung pad primer dan sekunder yang paling sesuai di mana ianya mempunyai pemindahan tenaga maksima dan paling kurang sensitif pada ketidakjajaran. Sifat magnet telah diuji bagi mendapatkan nilai fluks magnet tertinggi. Rekabentuk geometri pad dan simulasi telah dijalankan menggunakan perisian Multifizik COMSOL. Hasil simulasi mendapati pasangan gegelung yang tidak simetri telah menghasilkan kekuatan magnetik tertinggi apabila diameter luaran gegelung primer dan sekunder mempunyai nilai sama
    corecore