9 research outputs found

    MXenes—A New Class of Two-Dimensional Materials: Structure, Properties and Potential Applications

    Get PDF
    A new class of two-dimensional nanomaterials, MXenes, which are carbides/nitrides/carbonitrides of transition and refractory metals, has been critically analyzed. Since the synthesis of the first family member in 2011 by Yury Gogotsi and colleagues, MXenes have quickly become attractive for a variety of research fields due to their exceptional properties. Despite the fact that this new family of 2D materials was discovered only about ten years ago, the number of scientific publications related to MXene almost doubles every year. Thus, in 2021 alone, more than 2000 papers are expected to be published, which indicates the relevance and prospects of MXenes. The current paper critically analyzes the structural features, properties, and methods of synthesis of MXenes based on recent available research data. We demonstrate the recent trends of MXene applications in various fields, such as environmental pollution removal and water desalination, energy storage and harvesting, quantum dots, sensors, electrodes, and optical devices. We focus on the most important medical applications: photo-thermal cancer therapy, diagnostics, and antibacterial treatment. The first results on obtaining and studying the structure of high-entropy MXenes are also presented

    Investigation of AC Electrical Properties of MXene-PCL Nanocomposites for Application in Small and Medium Power Generation

    Get PDF
    The paper examined Ti3C2Tx MXene (T—OH, Cl or F), which is prepared by etching a layered ternary carbide Ti3AlC2 (312 MAX-phase) precursor and deposited on a polycaprolactone (PCL) electrospun membrane (MXene-PCL nanocomposite). X-ray Diffraction analysis (XRD) and Scanning Electron Microscopy (SEM) indicates that the obtained material is pure Ti3C2 MXene. SEM of the PCL-MXene composite demonstrate random Ti3C2 distribution over the nanoporous membrane. Results of capacitance, inductance, and phase shift angle studies of the MXene-PCL nanocomposite are presented. It was found that the frequency dependence of the capacitance exhibited a clear sharp minima in the frequency range of 50 Hz to over 104 Hz. The frequency dependence of the inductance shows sharp maxima, the position of which exactly coincides with the position of the minima for the capacitance, which indicates the occurrence of parallel resonances. Current conduction occurs by electron tunneling between nanoparticles. In the frequency range from about 104 Hz to about 105 Hz, there is a broad minimum on the inductance relationship. The position of this minimum coincides exactly with the position of the maximum of the phase shift angle—its amplitude is close to 90°. The real value of the inductance of the nanocomposite layer was determined to be about 1 H. It was found that the average value of the distance over which the electron tunnels was determined with some approximation to be about 5.7 nm and the expected value of the relaxation time to be τM ≈ 3 × 10−5 s

    Metabotropic Glutamate Receptors

    No full text

    Advances in the treatment of anxiety: Targeting glutamate

    No full text
    corecore