75 research outputs found

    Comparative evaluation of biochemical parameters during urinary infection in Maltese and Belgian shepherd dogs

    Get PDF
    Urinary tract infections can be uncomfortable, painful and even dangerous for most dog breeds. Clinical signs are often nonspecific and insufficient for diagnosis. Urinalysis in combination with biochemical parameters and urine culture is the best combination of clinical findings for diagnosis of urinary tract infections. The incidence of urinary tract infections in dogs population is growing and 27% of dogs develop an urinary tract infection through their life. Urinary infections occur more often in the elderly than in younger dogs. More than 70% of all urinary tract infections are infections with one bacterial species. Biochemical profile is important aspect for diagnosis establishment, but due to the nature of action infection by different agents may be considered as individual case. The main aim of this research was to analyse biochemical parameters of Maltese and Belgian Shepherd (Malinois) dog breed, who were affected by urinary tract infections. Urea concentration was elevated in Malinois, while urea, phosphates, albumins and alkaline phosphatase activity were elevated in Maltese dogs. Statistical analysis showed differences in concentrations of urea, creatinine, phosphates, so as alanine aminotransferase, alkaline phosphatase and amylase activity between compared breeds during acute urinary infections. Maltese dogs are less resistant to bacterias, that causes urinary tract infections, and have lower chance to maintain homeostasis of biochemical parameters in blood during urinary bacterial infections, in comparison to Maltese dogs

    A tectonic-rules-based mantle reference frame since 1 billion years ago – implications for supercontinent cycles and plate–mantle system evolution

    Get PDF
    Understanding the long-term evolution of Earth's plate–mantle system is reliant on absolute plate motion models in a mantle reference frame, but such models are both difficult to construct and controversial. We present a tectonic-rules-based optimization approach to construct a plate motion model in a mantle reference frame covering the last billion years and use it as a constraint for mantle flow models. Our plate motion model results in net lithospheric rotation consistently below 0.25∘ Myr−1, in agreement with mantle flow models, while trench motions are confined to a relatively narrow range of −2 to +2 cm yr−1 since 320 Ma, during Pangea stability and dispersal. In contrast, the period from 600 to 320 Ma, nicknamed the “zippy tricentenary” here, displays twice the trench motion scatter compared to more recent times, reflecting a predominance of short and highly mobile subduction zones. Our model supports an orthoversion evolution from Rodinia to Pangea with Pangea offset approximately 90∘ eastwards relative to Rodinia – this is the opposite sense of motion compared to a previous orthoversion hypothesis based on paleomagnetic data. In our coupled plate–mantle model a broad network of basal mantle ridges forms between 1000 and 600 Ma, reflecting widely distributed subduction zones. Between 600 and 500 Ma a short-lived degree-2 basal mantle structure forms in response to a band of subduction zones confined to low latitudes, generating extensive antipodal lower mantle upwellings centred at the poles. Subsequently, the northern basal structure migrates southward and evolves into a Pacific-centred upwelling, while the southern structure is dissected by subducting slabs, disintegrating into a network of ridges between 500 and 400 Ma. From 400 to 200 Ma, a stable Pacific-centred degree-1 convective planform emerges. It lacks an antipodal counterpart due to the closure of the Iapetus and Rheic oceans between Laurussia and Gondwana as well as due to coeval subduction between Baltica and Laurentia and around Siberia, populating the mantle with slabs until 320 Ma when Pangea is assembled. A basal degree-2 structure forms subsequent to Pangea breakup, after the influence of previously subducted slabs in the African hemisphere on the lowermost mantle structure has faded away. This succession of mantle states is distinct from previously proposed mantle convection models. We show that the history of plume-related volcanism is consistent with deep plumes associated with evolving basal mantle structures. This Solid Earth Evolution Model for the last 1000 million years (SEEM1000) forms the foundation for a multitude of spatio-temporal data analysis approaches

    Proxy evidence for state-dependence of climate sensitivity in the Eocene greenhouse

    Get PDF
    Despite recent advances, the link between the evolution of atmospheric CO2 and climate during the Eocene greenhouse remains uncertain. In particular, modelling studies suggest that in order to achieve the global warmth that characterised the early Eocene, warmer climates must be more sensitive to CO2 forcing than colder climates. Here, we test this assertion in the geological record by combining a new high-resolution boron isotope-based CO2 record with novel estimates of Global Mean Temperature. We find that Equilibrium Climate Sensitivity (ECS) was indeed higher during the warmest intervals of the Eocene, agreeing well with recent model simulations, and declined through the Eocene as global climate cooled. These observations indicate that the canonical IPCC range of ECS (1.5 to 4.5 °C per doubling) is unlikely to be appropriate for high-CO2 warm climates of the past, and the state dependency of ECS may play an increasingly important role in determining the state of future climate as the Earth continues to warm

    Philippine Sea Plate inception, evolution, and consumption with special emphasis on the early stages of Izu-Bonin-Mariana subduction

    Get PDF

    The topographic evolution of the Tibetan Region as revealed by palaeontology

    Get PDF
    The Tibetan Plateau was built through a succession of Gondwanan terranes colliding with Asia during the Mesozoic. These accretions produced a complex Paleogene topography of several predominantly east–west trending mountain ranges separated by deep valleys. Despite this piecemeal assembly and resultant complex relief, Tibet has traditionally been thought of as a coherent entity rising as one unit. This has led to the widely used phrase ‘the uplift of the Tibetan Plateau’, which is a false concept borne of simplistic modelling and confounds understanding the complex interactions between topography climate and biodiversity. Here, using the rich palaeontological record of the Tibetan region, we review what is known about the past topography of the Tibetan region using a combination of quantitative isotope and fossil palaeoaltimetric proxies, and present a new synthesis of the orography of Tibet throughout the Paleogene. We show why ‘the uplift of the Tibetan Plateau’ never occurred, and quantify a new pattern of topographic and landscape evolution that contributed to the development of today’s extraordinary Asian biodiversity

    Comparative Evaluation of Biochemical Parameters During Urinary Infection in Maltese and Belgian Shepherd Dogs

    Get PDF
    Urinary tract infections can be uncomfortable, painful and even dangerous for most dog breeds. Clinical signs are often nonspecific and insufficient for diagnosis. Urinalysis in combination with biochemical parameters and urine culture is the best combination of clinical findings for diagnosis of urinary tract infections. The incidence of urinary tract infections in dogs population is growing and 27% of dogs develop an urinary tract infection through their life. Urinary infections occur more often in the elderly than in younger dogs. More than 70% of all urinary tract infections are infections with one bacterial species. Biochemical profile is important aspect for diagnosis establishment, but due to the nature of action infection by different agents may be considered as individual case. The main aim of this research was to analyse biochemical parameters of Maltese and Belgian Shepherd (Malinois) dog breed, who were affected by urinary tract infections. Urea concentration was elevated in Malinois, while urea, phosphates, albumins and alkaline phosphatase activity were elevated in Maltese dogs. Statistical analysis showed differences in concentrations of urea, creatinine, phosphates, so as alanine aminotransferase, alkaline phosphatase and amylase activity between compared breeds during acute urinary infections. Maltese dogs are less resistant to bacterias, that causes urinary tract infections, and have lower chance to maintain homeostasis of biochemical parameters in blood during urinary bacterial infections, in comparison to Maltese dogs

    Mind the uncertainty: Global plate model choice impacts deep‐time palaeobiological studies

    Get PDF
    Abstract Global plate models (GPMs) aim to reconstruct the tectonic evolution of the Earth by modelling the motion of the plates and continents through time. These models enable palaeobiologists to study the past distribution of extinct organisms. However, different GPMs exist that vary in their partitioning of the Earth's surface and the modelling of continental motions. Consequently, the preferred use of one GPM will influence palaeogeographic reconstruction of fossil occurrences and any inferred palaeobiological and palaeoclimatic conclusion. Here, using five open‐access GPMs, we reconstruct the palaeogeographic distribution of cell centroids from a global hexagonal grid and quantify palaeogeographic uncertainty across the entire Phanerozoic (540–0 Ma). We measure uncertainty between reconstructed coordinates using two metrics: (1) palaeolatitudinal standard deviation and (2) mean pairwise geodesic distance. Subsequently, we evaluate the impact of GPM choice on palaeoclimatic reconstructions when using fossil occurrence data. To do so, we use two climatically sensitive entities (coral reefs and crocodylomorphs) to infer the palaeolatitudinal extent of subtropical climatic conditions for the last 240 million years. Our results indicate that differences between GPMs increase with the age of reconstruction. Specifically, cell centroids rotated to older intervals show larger differences in palaeolatitude and geographic spread than those rotated to younger intervals. However, high palaeogeographic uncertainty is also observed in younger intervals within tectonically complex regions (i.e. in the vicinity of terrane and plate boundaries). We also show that when using fossil data to infer the distribution of subtropical climatic conditions across the last 240 Ma, estimates vary by 6–7° latitude on average, and up to 24° latitude in extreme cases. Our findings confirm that GPM choice is an important consideration when studying past biogeographic patterns and palaeoclimatic trends. We recommend using GPMs that report true palaeolatitudes (i.e. use a palaeomagnetic reference frame) and incorporating palaeogeographic uncertainty into palaeobiological analyses

    Duration of Sturtian "Snowball Earth" glaciation linked to exceptionally low mid-ocean ridge outgassing

    Get PDF
    The Sturtian “Snowball Earth” glaciation (ca. 717–661 Ma) is regarded as the most extreme interval of icehouse climate in Earth’s history. The exact trigger and sustention mechanisms for this long-lived global glaciation remain obscure. The most widely debated causes are silicate weathering of the ca. 718 Ma Franklin large igneous province (LIP) and changes in the length and degassing of continental arcs. A new generation of two independent Neoproterozoic full-plate tectonic models now allows us to quantify the role of tectonics in initiating and sustaining the Sturtian glaciation. We find that continental arc length remains relatively constant from 850 Ma until the end of the glaciation in both models and is unlikely to play a role. The two plate motion models diverge in their predictions of the timing and progression of Rodinia break-up, ocean-basin age, ocean-basement depth, sea-level evolution, and mid-ocean ridge (MOR) carbon outflux. One model predicts MOR outflux and ocean basin volume–driven sea level lower than during the Late Cenozoic glaciation, while the other predicts outgassing and sea level exceeding those of the Late Cretaceous hothouse climate. The second model would preclude a major glaciation, while the first model implies that the trigger for the Sturtian glaciation could have been a combination of an extremely low MOR outflux (∼9 Mt C/yr) and Franklin LIP weathering. Such minimal outflux could have maintained an icehouse state for 57 m.y. when silicate weathering was markedly reduced, with a gradual build-up of MOR CO2 in the atmosphere paired with terrestrial volcanism leading to its termination.Adriana Dutkiewicz, Andrew S. Merdith, Alan S. Collins, Ben Mather, Lauren Ilano, Sabin Zahirovic, and R. Dietmar Mülle
    corecore