33 research outputs found

    Immune Modulation by Schistosoma mansoni Antigens in NOD Mice: Effects on Both Innate and Adaptive Immune Systems

    Get PDF
    We have shown that Schistosoma mansoni egg soluble antigen (SEA) prevents diabetes in the nonobese diabetic (NOD) mouse inducing functional changes in antigen presenting cells (APCs) and expanding T helper (Th) 2 and regulatory T cell (Treg) responses. A Th2 response to S. mansoni infection or its antigens is key to both the establishment of tolerance and successfully reproduction in the host. More recently we demonstrated that SEA treatment upregulates bioactive TGFβ on T cells with consequent expansion of Foxp3+ Tregs, and these cells might be important in SEA-mediated diabetes prevention together with Th2 cells. In this study we profile further the phenotypic changes that SEA induces on APCs, with particular attention to cytokine expression and markers of macrophage alternative activation. Our studies suggest that TGFβ from T cells is important not just for Treg expansion but also for the successful Th2 response to SEA, and therefore, for diabetes prevention in the NOD mouse

    Metabolomics and Lipidomics Study of Mouse Models of Type 1 Diabetes Highlights Divergent Metabolism in Purine and Tryptophan Metabolism Prior to Disease Onset.

    Get PDF
    With the increase in incidence of type 1 diabetes (T1DM), there is an urgent need to understand the early molecular and metabolic alterations that accompany the autoimmune disease. This is not least because in murine models early intervention can prevent the development of disease. We have applied a liquid chromatography (LC-) and gas chromatography (GC-) mass spectrometry (MS) metabolomics and lipidomics analysis of blood plasma and pancreas tissue to follow the progression of disease in three models related to autoimmune diabetes: the nonobese diabetic (NOD) mouse, susceptible to the development of autoimmune diabetes, and the NOD-E (transgenic NOD mice that express the I-E heterodimer of the major histocompatibility complex II) and NOD-severe combined immunodeficiency (SCID) mouse strains, two models protected from the development of diabetes. All three analyses highlighted the metabolic differences between the NOD-SCID mouse and the other two strains, regardless of diabetic status indicating that NOD-SCID mice are poor controls for metabolic changes in NOD mice. By comparing NOD and NOD-E mice, we show the development of T1DM in NOD mice is associated with changes in lipid, purine, and tryptophan metabolism, including an increase in kynurenic acid and a decrease in lysophospholipids, metabolites previously associated with inflammation

    The Role of Regulatory T Cell Defects in Type I Diabetes and the Potential of these Cells for Therapy

    No full text
    Type I diabetes is increasing in incidence in developed countries [1]. Diabetes arises from a breakdown of tolerance to islet antigens, resulting in T cell-driven destruction of the islet cells and concomitant hyperglycemia. In this review, we explore whether this loss of tolerance results in part from a defect in the action of regulatory T cells. We draw on both human data and that obtained from NOD mice, the murine model of autoimmune diabetes. Although insulin-based therapies have been highly successful in treating diabetes, the complications of long-term hyperglycemia are still major causes of morbidity and mortality. Accordingly, we also discuss whether treatment with regulatory T cells is a viable method for restoring long-term tolerance to self-antigens in recently diagnosed or pre-diabetic individuals. Regulatory T cell therapy offers many potential advantages, including a specific and lasting dampening of inflammation. However, some significant hurdles would have to be overcome before it could become an established treatment

    A zero-emission ferry for inland waterways

    No full text
    Reducing the human environmental impact is one of the most critical issues nowadays: in this perspective, the progressive decommissioning of fossil fuels is a significant priority to guarantee a sustainable future for the next generations. This paper proposes a zero-emission ferry for inland waterways and short-sea navigation, focusing on realistic solutions to provide the best trade-off between operational performance and environmental sustainability. In particular, the object of this study is the refitting of a double-ended ferry working in the Lago Maggiore, one of the largest Italian lakes. Systems suitable for the purpose have been selected and integrated onboard to maximize efficiency, implementing full-electric propulsion with electric motors, a Li-ion battery storage system, and photo-voltaic panels. The benefits and drawbacks of the considered technologies have been evaluated to select the most promising design solution, focusing on both onboard and on-shore impact in terms of compatibility with the existing infrastructures and considering life-cycle sustainability

    Salmonella typhimurium

    No full text
    corecore