
Subscriber access provided by UNIV OF CAMBRIDGE

Journal of Proteome Research is published by the American Chemical Society. 1155
Sixteenth Street N.W., Washington, DC 20036
Published by American Chemical Society. Copyright © American Chemical Society.
However, no copyright claim is made to original U.S. Government works, or works
produced by employees of any Commonwealth realm Crown government in the course
of their duties.

Article

A metabolomics and lipidomics study of mouse models
of type 1 diabetes highlights divergent metabolism in

purine and tryptophan metabolism prior to disease on-set
Steven A. Murfitt, Paula Zaccone, Xinzhu Wang, Animesh Acharjee, Yvonne

Sawyer, Albert Koulman, Lee D Roberts, Anne Cooke, and Julian Griffin
J. Proteome Res., Just Accepted Manuscript • DOI: 10.1021/acs.jproteome.7b00489 • Publication Date (Web): 10 Oct 2017

Downloaded from http://pubs.acs.org on October 13, 2017

Just Accepted

“Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted
online prior to technical editing, formatting for publication and author proofing. The American Chemical
Society provides “Just Accepted” as a free service to the research community to expedite the
dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts
appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been
fully peer reviewed, but should not be considered the official version of record. They are accessible to all
readers and citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered
to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published
in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just
Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor
changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers
and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors
or consequences arising from the use of information contained in these “Just Accepted” manuscripts.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/161895276?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 

 

A metabolomics and lipidomics study of mouse models of type 1 diabetes highlights 

divergent metabolism in purine and tryptophan metabolism prior to disease on-set 

 

Steven A. Murfitt1, Paola Zaccone2, Xinzhu Wang1, Animesh Acharjee3, Yvonne Sawyer2, 

Albert Koulman3,  Lee D. Roberts3, Anne Cooke2., & Julian Leether Griffin1,3*. 

 

1. The Sanger Building, 80 Tennis Court Road, Department of Biochemistry, 

Cambridge, CB2 1GA, UK. 

2. Department of Pathology, Tennis Court Rd, Cambridge CB21QP, UK. 
3. Medical Research Council Human Nutrition Research, The Elsie Widdowson 

Laboratory, 120 Fulbourn Road, Cambridge, UK. 

 

*corresponding author. Email: jlg40@cam.ac.uk. Tel. +44-1223 764922. 

  

Page 1 of 37

ACS Paragon Plus Environment

Journal of Proteome Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



2 

 

Abstract: 

With the increase in incidence of type 1 diabetes (T1DM) there is an urgent need to 

understand the early molecular and metabolic alterations that accompany the autoimmune 

disease. This is not least because in murine models early intervention can prevent the 

development of disease. We have applied a liquid chromatography (LC-) and gas 

chromatography (GC-) mass spectrometry (MS) metabolomics and lipidomics analysis of 

blood plasma and pancreas tissue to follow the progression of disease in three models 

related to autoimmune diabetes: the non-obese diabetic (NOD) mouse, susceptible to the 

development of autoimmune diabetes, and the NOD-E (transgenic NOD mice that express 

the I-E heterodimer of the major histocompatibility complex II) and NOD- severe combined 

immunodeficiency (SCID) mouse strains, two models protected from the development of 

diabetes. All three analyses highlighted the metabolic differences between the NOD-SCID 

mouse and the other two strains, regardless of diabetic status indicating that NOD-SCID 

mice are poor controls for metabolic changes in NOD mice. Comparing NOD and NOD-E 

mice we show the development of T1DM in NOD mice is associated with changes in lipid, 

purine and tryptophan metabolism, including an increase in kynurenic acid and a decrease in 

lysophospholipids, metabolites previously associated with inflammation. 

 

Keywords: Non Obese Diabetic (NOD) mouse, NOD-severe combined immunodeficiency 

(SCID) mouse, mass spectrometry, xanthinine, kynurenic acid. 
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Introduction: 

Type 1 diabetes (T1DM) is increasing in prevalence across the globe, particularly in 

westernised countries with incidences of 8-17 per 100,000 people in Northern Europe and 

the US, and rising to 35 per 100,000 in Scandinavia 1,2. The disease arises following the 

destruction of beta cells in the pancreas, resulting from an autoimmune response, with 

sufferers having autoantibodies to the 65-kDa isoform of glutamic acid decarboxylase, zinc 

transporter proteins, phosphatase- related IA-2 molecule, insulin and islet cells 3. While not 

everyone with autoantibodies will progress to T1DM, the likelihood increases with the 

number of autoantibodies with 3-4 antibody types increasing the risk to ~80% 3. 

There is an important need for early stage biomarkers of the disease progression in T1DM in 

order to better understand the early aetiology of the disease and potentially target 

immunosuppression therapy to prevent the further destruction of pancreatic beta cells. 

Furthermore, there is significant evidence that immunomodulation by infection can be used 

to prevent T1DM if targeted to the right clinical window of autoimmunity 4,5. While 

autoantibodies do discriminate between type 1 diabetics and healthy individuals, 

autoantibodies are relatively late stage changes and do not always lead to beta cell 

destruction 3, confounding their use as reliable biomarkers  

Metabolomics, the study of the metabolite complement of a biofluid, cell, tissue or whole 

organism 6 has been previously used to follow both early and late stage changes in T1DM. 

Drug induced T1DM using streptozotocin induces a variety of metabolic changes in rodents 

including metabolites in the citric acid cycle, glucose metabolism, choline turnover and 

amino acid metabolism 7. These pathways have also been confirmed to be altered in 

humans with T1DM, and in particular insulin treatment has also been associated with protein 

turnover/amino acid metabolism and ketosis in healthy individuals in human intervention 

studies 8,9. In addition metabolomics has been used to discriminate type 1 diabetics with 

early stage kidney disease from those without10-12. However, these are late changes in the 

pathogenesis of T1DM and are unlikely to provide biomarkers of the pre-diabetic state. 

A sub-set of the field of metabolomics is lipidomics, which studies the lipid component of 

biofluids, cells or tissues. Lipidomics has been transformed by recent developments in liquid 

chromatography mass spectrometry (LC-MS) which allows the rapid analysis of intact lipids 

from a range of chemical classes including triglycerols, diglycerols, phospholipids, free fatty 

acids, cholesterol and cholesterol esters and sphingolipids 13. Metabolomics and lipidomics 

have been used to also follow early stage disease progression in both mouse models and 
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human sufferers with T1DM 14-18. Examining serum from children who subsequently went on 

to develop T1DM, Oresic and colleagues 14 identified a number of early stage metabolic 

changes, including reduced concentrations of succinate, phosphatidylcholines and 

triglycerides at birth. In addition, prior to serum conversion in terms of autoantibodies, 

individuals had increased pro-inflammatory lysophosphocholines, and reduced 

concentrations of triglycerides and anti-oxidant ether lipids. Metabolic changes have even 

been detected in the cord blood of babies that subsequently developed T1DM before the 

age of 8 17. 

In the present study we have profiled metabolic and lipidomic changes in a mouse model of 

autoimmune diabetes. The non-obese diabetic (NOD) inbred mouse strain recapitulates the 

autoimmune nature of T1DM in humans and has allowed researchers to follow the 

autoimmune destruction of beta cells in the pancreas as well as develop treatments that halt 

this process 19. The mouse develops islet infiltration (insulitis) at around 3-4 weeks 

comprising initially of innate immune cells such as macrophages and dendritic cells followed 

by T cells and other cells of the immune system20-23 22-24. The mice develop diabetes from 

around 14 weeks of age. This mouse model has been used previously to monitor metabolic 

changes that accompany the progression of T1DM 16, but in this previous study only NOD 

mice were considered, and thus, it is difficult to determine what changes were associated 

with disease progression and what was associated with age-related changes in the 

pancreas. In the present study we have compared metabolic changes in NOD mice with their 

transgenic control strain NOD-E mice. The NOD-E mouse is a transgenic mouse generated 

directly on the NOD background which, unlike the NOD mouse, expresses the major 

histocompatibility complex (MHC) class II I-E heterodimer 25. These mice are protected from 

the development of T1DM and develop negligible insulitis. In the present study we show by 

metabolomics that the NOD-E mouse is a better control for the metabolic changes 

associated with the NOD mouse compared with the NOD severe combined 

immunodeficiency (SCID) mouse strain 26. 26. As the NOD-SCID mouse was generated 

through breeding the SCID mutation onto the NOD mouse background using donor SCID 

mice from a different genetic background there may be contributions from non-NOD genes in 

this strain. In addition NOD and NOD-E mice have distinct metabolic trajectories during the 

ageing process, while aged NOD mice that do not develop T1DM develop a metabolic 

phenotype more similar to NOD-E mice than NOD mice. 

   

Experimental Procedures: 

Animal Experiments: 
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All mice were obtained from stable colonies housed within the Department of Pathology, 

University of Cambridge. The incidence of diabetes in NOD female mice in this colony is 

around 80%. Further details as the progression of the disease process are found in the 

supplementary section. Mice were housed in a temperature- and humidity-controlled facility, 

with a 12-h:12-h light-dark cycle and access to water and regular chow diet (Caloric content: 

11.5% fat, 26.9% protein, 61.6% carbohydrate; RM1; Special Diet Services, UK) ad libitum. 

Blood plasma was collected by retro-orbital bleed into heparinised vials prior to 

centrifugation. The pancreas was rapidly dissected and a portion of each tissue was snap 

frozen with liquid nitrogen and stored at -80 oC until further analysis. All animal work was 

carried out in accordance with UK Home Office project and personal licences (80/2442 and 

70/8442) and was approved by the Ethical Review Committee of the University of 

Cambridge.  

 

Two studies were performed. The first examined blood plasma and pancreatic tissue taken 

post mortem from stable colonies of female NOD, NOD-E and NOD-SCID mice 

(Supplementary Table 1). In the second study blood plasma was sampled at six time points 

(6, 9, 11, 14, 19, and 22 weeks) for female NOD (n=9), NOD-E (n=7) and NOD-SCID mice 

(n=10) (Supplementary Table 2). In this study pancreas tissue was taken at the end of the 

study. 

Analysis of the metabolite composition of faeces 

To assess changes in the gut metabolome mouse faeces were collected from individual 

NOD (n=5 for 6 weeks age and n=6 each for 12 and 18 weeks age) and NOD-E mice (n=5 

for 6 and 12 weeks age). 20 mg of faeces were extracted using the chloroform/methanol 

extraction procedure described below. 

 

Metabolite extraction from the pancreas, blood plasma and faeces 

Metabolites (50 µl plasma or 50 mg tissue wet weight) were extracted using a modified Bligh 

and Dyer method 27. 600 µl of methanol:chloroform (2:1 v/v) was added to each sample, with 

tissue samples then being pulverized/homogenised using a TissueLyser (Qiagen, Hilden, 

Germany) set at 20 Hz for 20 minutes and sonicated for 15 minutes. 200 µl of chloroform 

and 200 µl of H2O (Chromasolv® Plus for HPLC, Sigma-Aldrich, Gillingham, UK) were 

added, vortex mixed, and centrifuged at 17,000 rcf for 15 minutes. The aqueous and organic 
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layers were then separated. The procedure was repeated to form a double extract to 

maximise the recovery of metabolites from the protein pellet. The aqueous layer was dried 

overnight in an evacuated centrifuge (Eppendorf, Hamburg, Germany), while the lipid 

fraction was dried under a stream of nitrogen gas. Dried samples were stored at -80 °C until 

analysis. 

 

Lipidomics analysis of blood plasma and pancreas tissue 

All solvents used were of LC-MS grade or better and ordered from Sigma Aldrich 

(Gillingham, UK). All internal standards were obtained from Avanti Polar Lipids (Alabaster, 

AL, USA) with the exception of undecanoic acid and trilaurin (Sigma Aldrich). 

The samples, QC samples (pools of either the plasma and pancreas extracts) and blanks 

were placed in a pre-defined random order across 96-well plates (Plate+, Esslab, Hadleigh, 

UK). The extracts were reconstituted in 100 µl of 7.5 mM NH4Ac IPA:MeOH (2:1), spiked 

with six internal standards (1,2-di-o-octadecyl-sn-glycero-3-phosphocoline, 1,2-di-O-

phytanyl-sn-glycero-3-phosphoethanolamine, C8-ceramide, N-heptadecanoyl-D-erythro-

sphingosylphosporylcholine, undecanoic acid, and trilaurin) which were used to correct for 

variations in m/z across the dataset acquired. 

Lipidomics was performed on the extract using chip-based nanospray with an Advion 

TriVersa Nanomate (Advion, Ithaca, USA) interfaced to the Thermo Exactive Orbitrap 

(Thermo Scientific, Hemel Hampstead, UK), using a mass acquisition window from 200 to 

2000 m/z and acquisition in positive mode. A voltage of 1.2 kV was used in positive mode 

with an acquisition time of 72 s. 

Acquired spectral raw data were processed using an in-house bioinformatics platform based 

on XCMS 28. This performed sample-specific mass re-calibration using predefined sets of 

internal standards and the removal of commonly present contaminant ions (often associated 

with plasticizers) with help of predefined rejection lists and mass defect filters. The raw data 

were converted to .mzXML (using MSconvert 29 with peakpick level 1), parsed with R and 50 

(scan from 20 to 70) spectra were averaged per sample using XCMS 28, with a signal cutoff 

at 2000. The files were aligned using the XCMS 28,30 grouping function using “mzClust” with 

a m/z-window of 22 ppm and a minimum coverage of 60 %. Isotopes were annotated using 

the CAMERA package in R with the following parameters (maxcharge=1, ppm=5, 

mzabs=0.001, intval = c("into"), minfrac=0.25) 30. 
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Automated compound annotation was carried out using both an exact mass search in 

compound libraries as well as applying the referenced Kendrick mass defect approach. 

Signal normalisation was performed by summing the intensities of all detected metabolites to 

a fixed value to produce a correction factor for the efficiency of ionisation. Features of 

interest were subsequently confirmed using fragmentation experiments on a Thermo Velos 

Orbitrap mass analyser using an Advion Nanomate to directly infuse the lipid extract or a 

Surveyor HPLC system for chromatographic separation. The selected masses were isolated 

with a 1.5 m/z width in the linear ion trap and then fragmented using either linear ion trap 

with 35% relative collision energy or in the HCD (higher-energy collision-induced 

dissociation) collision cell, with a range of collision energies from 5% to 75% relative collision 

energy. All spectra were recorded in the Orbitrap set at 100,000 resolution. As fragmentation 

data confirms the fatty acids that are present but does not definitively define where the 

double bonds are placed these annotations are at level 2 of the Metabolomics Standards 

Initiative 31. 

Targeted analysis of aqueous metabolites in blood plasma, pancreas and faeces 

All analyses were carried out using a QTRAP 4000 quadrupole mass spectrometer  (AB 

Sciex, Warrington, UK) coupled to an Acquity ultra performance liquid chromatography 

(UPLC) system from Waters Ltd. (Atlas Park, Manchester, UK) according to published 

methods 32,33. In brief, formic acid, ammonium acetate, and valine-d8 were purchased from 

Sigma-Aldrich. Plasma samples were prepared for LC-MS analyses via protein precipitation 

with the addition of nine volumes of 74.9:24.9:0.2 vol/vol/vol acetonitrile/methanol/formic acid 

containing stable isotope-labeled valine-d8 internal standard. The valine-d8 standard was 

used to calculate concentrations for the endogenous metabolites measured by this method. 

The samples were centrifuged (10 min, 15,000 g, 4 °C), and the supernatants were injected 

directly. Two columns were used for chromatography: i. an Atlantis HILIC silica 3 µm 2.1 × 

150 mm column (Waters Corporation) at 30 °C using 0.1 % formic acid and 10 mM 

ammonium formate as solvent A and 0.1 % formic acid in acetonitrile as solvent B, at 250 

uL/min across a 32 min chromatography run time and ii. a Synergi 4u Polar-RP 80A 4µm 4.6 

× 50 mm column (Phenomenex) at 30 °C using 95% water, 5% acetonitrile and 5 mM 

ammonium acetate as solvent A and 5% water, 95% acetonitrile and 5 mM ammonium 

acetate as solvent B, at 250 uL/min across a 15 min chromatography run time. This method 

detected the following metabolites: glycine, alanine, serine, threonine, methionine, aspartate, 

glutamate, asparagine, glutamine, histidine, arginine, lysine, valine, leucine, pheylalanine, 

tyrosine, tryptophan, proline, cis/trans hydroxyproline, ornithine, citrulline, taurine, 5-HT, 5-

HIAA, serotonin, cysteamine, aminoisobutyric acid, dimethylglycine, homocysteine, 
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argininosuccinate, ADMA/SDMA, allantoin, GABA, anthranilic acid, carnitine, kynurenic acid, 

1-methylhistamine, 5'-adenosylhomocysteine, carnosine, histamine, 3-hydroxyanthranilic 

acid, N-carbomoyl-beta-alanine, cobalamin, thiamine, niacinamide, betaine, choline, 

phosphocholine, phosphoethanolamine, alpha-glycerophosphocholine, acetylcholine, 

spermidine, creatine, creatinine, thyroxine, trimethylamine-N-oxide, glucose, adenosine, 

cytosine, thymidine, xanthosine, 2'-deoxycytidine, isoleucine, xantherenate, kynurenine, 

beta-hydroxyisovaleric acid, adenine, AMP, cGMP, CMP, guanine, guanosine, methyl-

cytosine, PEP, SAH, uracil, cystathionine, histidinol, N-acetyl-glutamate, N-acetyl-glutamine, 

glucosamine-6-phosphate, IDP and indole. As metabolite identification was confirmed with 

respect to genuine standards this is a level 1 identification according to the Metabolomics 

Society Metabolomics Standards Initiative 31. 

 

Total plasma fatty acid analysis using fatty acid methyl esters by Gas Chromatography –

Mass Spectrometry of blood plasma, pancreas and faeces  

Total fatty acid analysis was performed as described in 34.The organic fraction was dissolved 

in methanol:chloroform (750 µl,  ratio 1:1) and D25-tridecanoic acid in chloroform (internal 

standard, at 200 µM, 50 µl; Sigma Aldrich) was added. Acid-catalyzed esterification was 

used to derivatize the organic phase samples. BF3-methanol (10%, 0.125 ml; Sigma-Aldrich) 

was added to the organic phase and incubated at 90 °C for 90 minutes. Water (0.15 ml) and 

hexane (0.3 ml) were added and the samples vortex mixed for 1 minute and left to form a 

bilayer. The aqueous phase was discarded and the organic layer, containing fatty acid 

methyl esters (FAMEs), evaporated to dryness under a stream of nitrogen prior to 

reconstitution in analytical grade hexane (100 µl; Sigma-Aldrich) before gas chromatography 

mass spectrometry (GC-MS) analysis.  

 

GC-MS was performed using a Trace GC Ultra coupled to a Trace DSQ II mass 

spectrometer (Thermo Scientific, Hemel Hempstead, UK). The derivatized organic samples 

were injected with a split ratio of 20 onto a 30 m × 0.25 mm 70% cyanopropyl 

polysilphenylene-siloxane 0.25 µm TR-FAME stationary phase column (Thermo Scientific). 

GC-MS chromatograms were processed using Xcaliber (version 2.0; Thermo Scientific). 

Each individual peak was integrated and then normalized to total intensity of the FAMEs 

detected. Overlapping peaks were separated using traces of single ions. Peak assignment 

was based on mass fragmentation patterns matched to the National Institute of Standards 

and Technology (USA) library and to previously reported literature. Identification of 

metabolites from organic phase GC-MS analysis was supported by comparison with a FAME 
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standard mix (Supelco 37 Component FAME Mix; Sigma-Aldrich) and retention time 

matching. As metabolite identification was confirmed with respect to genuine standards this 

is a level 1 identification according to the Metabolomics Society Initiative 31. 

 

Univariate statistical analysis 

Univariate statistical tests including Student’s t-test and ANOVA were performed with Matlab 

(Mathworks) using the Statistical Toolbox, with the exception of Pearson correlation plots 

which were performed within the statistics package R (www.r-project.com) as described in 35. 

For univariate statistics a Bonferonni correction was applied to correct for multiple testing. 

 

Multivariate statistical analysis 

 

The metabolic profiles obtained, containing integral information, were analysed using the 

multivariate statistical analysis tools found in SIMCA (version 13; Umetrics AB, Umeå, 

Sweden). Models were processed using principal components analysis (PCA; an 

unsupervised technique), partial least squares discriminate analysis (PLS-DA; a supervised 

classification), orthogonal partial least squares discriminate analysis (OPLS-DA; a 

supervised classification) and orthogonal partial least squares (O-PLS; a multivariate 

regression tool used with age set as the y-variable) where appropriate. Lipidomics data were 

Pareto scaled, in which each variable was centred and multiplied by 1/(Sk)
1/2 where Sk is the 

standard deviation of the variable. GC-MS total fatty acid data and targeted analysis of 

aqueous metabolites were unit variance scaled. Model statistics reported include the fraction 

of the sum of squares for the selected component (R2) which equates to the percentage of 

the model variance explained, and the predictive ability (Q2). Cross-validation was performed 

to test whether models were over fitted. For PLS-DA models random permutation was used 

whereby the class membership of individual samples are permutated randomly. In addition 

ANOVA of the cross-validated residuals (CV-ANOVA) test was performed within Simca to 

further validate the models 36. Where relevant OPLS-DA models were further validated by 

selecting 2/3 of the data randomly and then predicting the class membership of the other 

1/3.  

 

Results: 

Lipidomics of blood plasma: 

Blood plasma from both the cross sectional study and time course study were analysed 

using direct infusion (DI-)MS in positive ion mode (Figure 1a). 250 variables were detected 
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across the dataset and these were imported into the multivariate models. Initially, the 

samples from the NOD, NOD-E and NOD-SCID mice were compared. OPLS-DA readily 

separated the three mouse genotypes according to their lipidomic profiles, regardless of age 

(Figure 1b; for summary statistics see figure legend). This model was improved by a two 

group comparison where the NOD-SCID mice were compared with a combined group of 

NOD and NOD-E mice (Figure 1c). This was in part driven by the greater long chain 

containing triglycerides in the two NOD strains, particularly TAG(58:9) (exact mass(m/z): 

946.789), TAG(62:14) (m/z = 992.772), TAG(58:10) (m/z = 944.773), TAG(60:11) (m/z = 

970.790), TAG(58:11) (m/z = 942.757), TAG(58:8) (m/z =  948.805), TAG(60:12) (m/z = 

968.773), TAG(60:10) (m/z = 972.805), TAG(56.9) (m/z = 918.756) and TAG(60:9) (m/z = 

974.821). To test the validity of the model further, an OPLS-DA model was built using 2/3 of 

the data and then predicting the class membership of the remaining third. This correctly 

picked the classification of 87% of the data. 

Removing the NOD-SCID group from the dataset, and comparing the NOD and NOD-E mice 

for those aged 4-23 weeks, OPLS-DA discriminated the two mouse strains (Figure 1d). 

NOD-E were characterised by increased concentrations of cholesterol esters and 

lysophosphatidylcholines (Table 1 for list of metabolite changes) while NOD mice had higher 

concentrations of a range of triglycerides and diglycerides (Table 1). To test the validity of 

the model further, an OPLS-DA model was built using 2/3 of the data and then predicting the 

class membership of the remaining third. This correctly picked the classification of 71% of 

the data. 

Considering the time course of the development of type 1 diabetes in the NOD mice, the 

lipidomics data for the NOD and NOD-E mice was next examined looking at mice less than 

14 weeks and mice aged 14 weeks and above. For mice less than 14 weeks, OPLS-DA 

separated the two genotypes, although the model was relatively weak (Figure 1e). This 

classification was caused by increases in ceramides, cholesterol esters and lyso-

phophatidylcholines and three unknown lipids (m/z = 642.619), (m/z = 590.323) and (m/z = 

909.548) in NOD-E mice, and triglycerides and an unknown lipid (m/z = 577.520) in NOD 

mice (Table 1). A more robust OPLS-DA model was built for mice aged 14 weeks and older 

(Figure 1f). However, the distinct pattern between cholesterol esters and lyso-phospholipids 

versus triglycerides found in the overall NOD compared with NOD-E mice comparison, and 

the younger mice was no longer apparent at this later time point (Table 1). 

Next we compared lipidomic profiles of NOD mice aged 25-30 weeks who had not 

developed T1DM (NOD* group) with the NOD and NOD-E lipidomic profiles used in the 

previous comparisons. No model could be built that discriminated that NOD* group from the 
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NOD-E mice, indicating they shared a common metabolic profile. However, the NOD and 

NOD* group was separated by OPLS-DA (Figure 1g). To further investigate these profiles, 

the NOD* group was mapped onto the NOD and NOD-E OPLS-DA model in Figure 1d. 

Using this model to classify the NOD* group, 10/10 samples were classified with the NOD-E 

group, with the average predicted Y = 0.84 ± 0.14, where Y=1 is a perfect classification as a 

NOD-E mouse and Y= 0 is a perfect classification as a NOD mouse. 

Table 1: Summary of metabolite changes for NOD and NOD-E comparisons described in 

Figure 1. Key: CE cholesterol ester, LPC lysophosphatidylcholine, TAG triacylglycerols, DI-

MS direct infusion mass spectrometry, QqQ triple quadrupole mass spectrometry. MSI 

Metabolomics Standardisation Initiative for metabolite identification.   

Comparison Increased in NOD Increased in NOD-E Method Adduct Mass or mass 

transition 

MSI level 

assignment 

All NOD v 
NOD-E 

 
 
 
 
 
 
 
 
 
 
TAG(56:8)  
TAG(52:6) 
TAG(54:4)  
TAG(52:3)  
TAG(53:4)  
TAG(58:10)  
TAG(54:7)  
TAG(54:5)  
TAG(52:5)  
DAG(41:4)  
TAG(54:6)  
TAG(52:4)  
Argininosuccinate 
cobalamin 
creatinine  
AMP  
kynurenic acid 

CE(16:1)  
LPC(20:4)  
LPC(22:6)  
CE(18:1)  
LPC(22:6)  
LPC(18:2)  
LPC(18:1) 
CE(16:0)  
PC(34:3)  
CE(18:4) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Serotonin 
5-hydroxytryptophan 
phosphoethanolamine 
phosphoenolpyruvate 
Ornithine 

DI-MS 
DI-MS 
DI-MS 
DI-MS 
DI-MS 
DI-MS 
DI-MS 
DI-MS 
DI-MS 
DI-MS 
DI-MS 
DI-MS 
DI-MS 
DI-MS 
DI-MS 
DI-MS 
DI-MS 
DI-MS 
DI-MS 
DI-MS 
DI-MS 
DI-MS 
QqQ 
QqQ 
QqQ 
QqQ 
QqQ 
QqQ 
QqQ 
QqQ 
QqQ 
QqQ 

[M+H]
+ 

[M+H]
+ 

[M+H]
+ 

[M+H]
+ 

[M+H]
+ 

[M+H]
+ 

[M+H]
+ 

[M+H]
+ 

[M+H]
+ 

[M+H]
+ 

[M+NH4]
+ 

[M+NH4]
+ 

[M+NH4]
+ 

[M+NH4]
+ 

[M+NH4]
+ 

[M+NH4]
+ 

[M+NH4]
+ 

[M+NH4]
+ 

[M+NH4]
+ 

[M+NH4]
+ 

[M+NH4]
+ 

[M+NH4]
+
 

649.603 
544.340 
568.340 
668.634 
590.323 
520.340 
522.356 
642.619 
756.555 
645.559 
920.772 
868.740 
900.804 
874.788 
886.788 
944.773 
894.756 
898.788 
870.756 
704.636 
896.772 
872.772 

291→70 

678→147 

114→44 

134→107 

190→144 

177→160 

221→204 

142→44 

168→ 

133→70 

2 
2 
2 
2  
2 
2 
2 
2 
2 
2 
2 
2 
2 
2  
2 
2 
2 
2 
2 
2 
2 
2 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
 

Young NOD 

v NOD-E 

(less than 

14 weeks) 

 

 

 

 
 
 
TAG(52:3) 
TAG(51:3)  
TAG(52:4)  
TAG(52:5)  
TAG(52:6)  

(Cer(t40:0)  
Cer(t42:0)  
CE(18:4)  
CE(20:4)  
(LPC(20:4)  
LPC(22:6) 
 
 
 
 
 

DI-MS 
DI-MS 
DI-MS 
DI-MS 
DI-MS 
DI-MS 
DI-MS 
DI-MS 
DI-MS 
DI-MS 
DI-MS 

[M+H]
+ 

[M+H]
+ 

[M+H]
+ 

[M+H]
+ 

[M+H]
+ 

[M+H]
+ 

[M+NH4]
+ 

[M+NH4]
+ 

[M+NH4]
+ 

[M+NH4]
+ 

[M+NH4]
+ 

640.604 
668.633 
645.559 
673.590 
544.340 
568.340 
874.788 
860.772 
872.772 
870.756 
868.740 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 
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TAG(54:5)  
TAG(54:7)  
TAG(50:4)  
TAG(54:6)  
Arginosuccinate 
Cobalamin 
creatine 

 
 
 
 
 
 
 
5-hydroxytryptophan 
Serotonin 
phosphoenolpyruvate 
Phosphoethanolamine 
ornithine 

DI-MS 
DI-MS 
DI-MS 
DI-MS 
QqQ 
QqQ 
QqQ 
QqQ 
QqQ 
QqQ 
QqQ 
QqQ 

[M+NH4]
+ 

[M+NH4]
+ 

[M+NH4]
+ 

[M+NH4]
+ 

898.788 
894.756 
844.741 
896.772 

291→70 

678→147 

132→90 

221→204 

177→160 

168→ 

142→44 

133→70 

2 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

Old NOD v 
NOD-E (14 
weeks and 
older) 

 
 
 
 
 
 
 
 
 
CE(20:4) 
LPC(20:3)  
Cer(t43:1) 
LPC (18:0) 
CE(20.4)  
AMP 
Cobalamin 
Arginosuccinate 

TAG(56:6)  
PC(32:0)  
TAG(50:2)  
TAG(56:7)  
TAG(52:3)  
TAG(50:1)  
DG (O-34:3)  
TAG(50:3)  
LPC(22:6) 
 
 
 
 
 
 
 
 
Serotonin 
5-hydroxytryptophan 
phosphoenolpyruvate 
Phosphoethanolamine 

DI-MS 
DI-MS 
DI-MS 
DI-MS 
DI-MS 
DI-MS 
DI-MS 
DI-MS 
DI-MS 
DI-MS 
DI-MS 
DI-MS 
DI-MS 
DI-MS 
QqQ 
QqQ 
QqQ 
QqQ 
QqQ 
QqQ 
QqQ 

[M+NH4]
+ 

[M+H]
+ 

[M+NH4]
+ 

[M+NH4]
+ 

[M+NH4]
+ 

[M+NH4]
+ 

[M+NH4]
+ 

[M+NH4]
+ 

[M+H]
+ 

[M+H]
+ 

[M+H]
+ 

[M+H]
+ 

[M+H]+ 
[M+Na]+

 

 

 

924.807 
734.570 
848.772 
922.789 
874.788 
850.789 
577.520 
846.756 
568.340 
690.620 
546.354 
680.635 
524.372 
695.575 

134→107 

678→147 

291→70 

177→160 

221→204 

168→ 

142→44 

2 

2 

2 

2 

2 

2 

2 

2 

2 
2 
2 
2 
2 
2 
1 
1 
1 
1 
1 
1 
1 
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Figure 1: A: High resolution mass spectrum of a typical lipid extract from blood plasma 

derived from the NOD mouse. B. OPLS-DA plot of lipidomics of blood plasma from NOD, 

NOD-E and NOD-SCID mice considered as separate groups. Data is Pareto scaled. R2(X) = 

75%, R2(Y) = 48%; Q2 = 34%; p = 3.5*10-22 by CV-ANOVA for cross validation. 2 
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components and 6 orthogonal components. C. OPLS-DA plot of lipidomics of blood plasma 

from NOD-SCID mice compared with a combined group of NOD and NOD-E mice (labelled 

Both). Data is Pareto scaled. R2(X) = 69%; R2(Y) = 68%; Q2 = 51%; p = 5.8*10-34. 1 

component and 6 orthogonal components. D. OPLS-DA plot of lipidomics of blood plasma 

from NOD and NOD-E mice. Data is Pareto scaled. R2(X) = 57%, R2(Y) = 41%, Q2 = 23%; p 

= 5.4*10-9, 1 component and 3 orthogonal components. E. OPLS-DA plot of lipidomics of 

blood plasma from NOD and NOD-E mice under 14 weeks of age. Data is Pareto scaled. 

R2(X) = 43%, R2(Y) = 32%, Q2 = 23%, p = 1.2*10-7, 1 component and 1 orthogonal 

component. F. OPLS-DA plot of lipidomics of blood plasma from NOD and NOD-E mice 

aged 14 weeks and over. Data is Pareto scaled. R2(X) = 56%, R2(Y) = 80%, Q2 = 54%; 

p=2.2*10-5, 1 component and 4 orthogonal components. G. OPLS-DA plot of lipidomics of 

blood plasma from NOD (diabetic) and NOD (non-diabetic referred to as NODSTAR) mice 

aged 25-30 weeks and over. R2(X) = 68%; R2(Y) = 79%; Q2 = 56%; p = 2.5*10-11, 1 

component and 4 orthogonal components. 

To explore the lipidomic changes further, total fatty acid analysis was performed using GC-

MS. Examining the different mouse strains, a model could be built that discriminated the 

three mouse strains (Figure 2a), regardless of age of animal, with again the NOD-SCID 

mice being the most different from the other two mouse strains. To explore this difference 

further, the NOD-SCID mice were compared with the other two strains treated as a single 

group. This produced a more robust model (Figure 2b), with NOD-SCID mice having higher 

concentrations of C16:0, C21:0, C20:5, and C18:3 and decreased concentrations of C16:2, 

C24:1, C17:0 and C14:0. Similar fatty acid changes were also observed in the Pareto scaled 

model as evidenced in the associated S-plot (Figure 2c). To test the validity of the model 

further, an OPLS-DA model was built using 2/3 of the data and then predicting the class 

membership of the remaining third. This correctly picked the classification of 88% of the 

data. However, NOD and NOD-E mice regardless of age could not be separated according 

to their total fatty acid profile (data not shown). Similarly no model could be built that 

discriminated NOD from NOD-E mice when considering animals 14 weeks and over of age, 

or when considering the animals under 14 weeks of age. 

Finally we examined whether we could model time changes in either the NOD or NOD-E 

mice using PLS to regress age of animal against metabolic profiles. A robust model was built 

for regressing the blood plasma profile of NOD mice against age (Figure 2d shows the 

actual verses predicted age of mice according to the total fatty acid profile of the blood 

plasma). This was caused by increases in C18:3, C18:2, and C20:4, and decreases in 

C16:1, cholesterol, C22:0, and C20:3 as the animals age. However, no model could be 

produced for the NOD-E mice that passed cross validation. 
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Figure 2: A. OPLS-DA plot of total fatty acid analysis of blood plasma from NOD, NOD-E 

and NOD-SCID mice considered as separate groups. Data is Univariate scaled. R2(X) = 

25%; R2(Y) = 47%; Q2 = 33%, 2 components and 1 orthogonal component. B. OPLS-DA plot 

of total fatty acid analysis of blood plasma from NOD-SCID mice compared with a combined 

group of NOD and NOD-E mice (labelled Both). Data is univariate scaled. R2(X) = 40%; 

R2(Y) = 80%; Q2 = 72%; p = 6.3*10-37, 1 component and 3 orthogonal components. C. S-plot 

of Pareto scaled variables from the dataset analysed for the plot in B. D. PLS plot of age 

against metabolic profile of NOD mice. Q2 = 51%, R2(X) = 27%, R2Y = 77%; p=4*10-6, 1 

component and 2 orthogonal. 

 

 

 

Alterations in amino acid metabolism in blood plasma 

LC-MS/MS was used to profile amino acids and nucleotides using a targeted method of 87 

metabolites in blood plasma and then multivariate statistics was used to identify clusters 

within the dataset in terms of comparing different mouse genotypes, as well as exploring 

time trends by regressing age of animal against metabolic profile. Initially, the three mouse 

strains were compared regardless of age. OPLS-DA readily discriminated all three groups 
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according to genotype, with NOD-SCID mice most separated along the first component 

compared with the other two animal models (Figure 3a). Similarly to the lipidomic data, a 

more robust model could be built separating the NOD-SCID mice from the other two strains 

(Figure 3b). To test the validity of the model further, an OPLS-DA model was built using 2/3 

of the data and then predicting the class membership of the remaining third. This correctly 

picked the classification of 92% of the data. This separation was driven by increases in 

trimethylamine-N-oxide, kynurenine, 1-methyl-histidine, xanthosine and lysine and 

decreases in cobalamin, betaine, β-hydroxyisovaleric acid, acetylcholine and inosine 

diphosphate in the NOD-SCID mice (Figure 3c). Taking the metabolites with a Variable 

Importance Parameter >1 from this model, metabolites involved in nucleotide metabolism, B-

vitamins, one-carbon metabolism/choline breakdown and amino acids were responsible for 

this discrimination (Supplementary Table 3). Using the metabolite enrichment software on 

MetaboAnalyst 37 the most perturbed pathways were glycine, serine and threonine 

metabolism, biotin/thiamine metabolism, beta-alanine metabolism, tryptophan metabolism 

and protein biosynthesis. 

Underlying the large differences between NOD-SCID mice and the other two strains, a 

weaker model was produced examining NOD and NOD-E mice, regardless of age. OPLS-

DA produced a one component model with three orthogonal components with a Q2 = 50% 

indicating the separation was less marked than models involving the NOD-SCID strain 

(Figure 3d). To test the validity of the model further, an OPLS-DA model was built using 2/3 

of the data randomly selected and then predicting the class membership of the remaining 

third. This correctly picked the classification of 83% of the data. This was associated with an 

increase in the concentrations of argininosuccinate, cobalamin, creatinine, AMP and 

kynurenic acid in NOD mice and a relative increase in concentration of serotonin, 5-

hydroxytryptophan (5-HT), phosphoethanolamine, phosphoenolpyruvate and ornithine in 

NOD-E mice (Figure 3e). While better models could be built considering mice aged below 

14 weeks (Figure 3f) and over 14 weeks (Figure 3g), similar metabolites drove all three 

models (Figure 3e & 3h). 
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Figure 3: A. OPLS-DA plot of targeted analysis of central metabolism (amino acids, TCA 

cycle intermediates, nucleotides, and other small aqueous metabolites) of blood plasma from 

NOD, NOD-E and NOD-SCID mice considered as separate groups. Data is Univariate 

scaled. R2(X) = 56%, R2(Y) = 72%, Q2 = 52%, 2 components and 4 orthogonal components; 

CV ANOVA validation p = 1.5*10-22. B. OPLS-DA plot of targeted analysis of central 

metabolism of blood plasma from NOD-SCID mice compared with the NOD and NOD-E 
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mice as a single group. R2(X) = 42%, R2(Y) = 79%, Q2 = 79%, 1 component and 2 

orthogonal components; CV-ANOVA validation p = 2.7*10-38. C. Variable Importance 

Parameter (VIP) plot to show key metabolites that are most important for the discrimination 

for the plot in B. D. OPLS-DA plot of targeted analysis of central metabolism of blood plasma 

from NOD and NOD-E mice. Data is Univariate scaled. R2(X) = 51%; R2(Y) = 76%; CV-

ANOVA validation p = 2*10-10. E. VIP plot to show key metabolites that are most important 

for the discrimination for the plot in D. F. OPLS-DA plot of targeted analysis of central 

metabolism of blood plasma from NOD and NOD-E mice below 14 weeks of age. Data is 

Univariate scaled. R2(X) = 44%, R2(Y) = 84%, Q2 = 74%, 1 component and 2 orthogonal 

components; CV ANOVA validation p = 2.7*10-38. G. OPLS-DA plot of targeted analysis of 

central metabolism of blood plasma from NOD and NOD-E mice 14 weeks and older of age. 

Data is Univariate scaled. R2(X) = 64%, R2(Y) = 82%, Q2 = 51%, 1 component and 4 

orthogonal components; CV-ANOVA validation p = 2.7*10-38. H. SUS-plot of discriminatory 

metabolites for models described in F and G.  

 

For both non-diabetic and diabetic NOD mice, and NOD-E mice robust PLS models could be 

built between amino acid profiles and age of animal. For the non-diabetic NOD mice, age 

was associated with an increase in 5-hydroxytryptophan (p = 0.017; One-way ANOVA), 

serotonin (p = 0.013), creatinine (p < 0.0001), histamine (p = 0.0002) and cytosine (p < 

0.0001) and decreases in dimethylglycine (p = 0.0072) and hydroxyproline (p=0.005) 

producing a robust PLS model (Figure 4a). Repeating this analysis with the diabetic NOD 

mice another highly predictive model was again built between age and amino acid profiles 

(R2X = 45%, R2Y = 97%; Q2 = 78%; data not shown). As with the non-diabetic animals, 

ageing was associated with a decrease in hydroxyproline (p = 0.0002 using one-way 

ANOVA). In addition, ageing of the non-diabetic NOD animals was associated with a 

decrease in arginine (p = 0.004), glycerophosphocholine (p < 0.0001) and lysine (p = 0.006) 

and increased in trimethylamine-N-oxide (p<0.0001), kynurenic acid (p < 0.0001), 

phenylalanine (p = 0.0005), glutamine (p = 0.0003) and alanine (p < 0.0001) (data not 

shown).  

Similarly a robust PLS model was also built for NOD-E mice (Q2 = 72%, R2X = 46%, R2Y = 

92%). As with the NOD mice, ageing was associated with a decrease in hydroxyproline (p < 

0.0001 one-way ANOVA) and an increase in creatinine (p < 0.0001). In addition across the 

ageing time course there was a decrease in xanthosine (p < 0.0001) and increases in the 

concentration of tryptophan (p = 0.0001), thiamine (p < 0.0001), creatine (p = 0.0002), and 
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indole (p = 0.0003). In all three models the use of SUS plots demonstrated that the 

metabolic effects of ageing were similar across all three mouse groups (Figure 4b). 

 

 

Figure 4. A: PLS model of targeted analysis of central metabolism of blood plasma from 

NOD mice against age (R2X = 53%, R2Y = 79%, Q2 = 65%). B: SUS-plot of PLS models for 

NOD mice and NOD-E mice against age. In this plot the loadings for the two PLS models are 

plotted against each other so that if the two models had the same loadings then these would 

line up at 45° to the x and y-axes. While some metabolites are in common there is also a 

degree of scatter from the 45° line showing that other metabolites are responsible for the 

ageing trends in the NOD and NOD-E mice. 

 

One of the major pathways to be perturbed between the three strains of mice and across the 

ageing studies was the tryptophan metabolism pathway (KEGG map 00380). To investigate 

this further we constructed correlation plots between tryptophan and its products detected in 

the targeted assay for NOD and NOD-E mice (Figure 5a). For both strains tryptophan was 
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highly correlated with the majority of metabolites, as might be expected by the major 

precursor to many of these metabolites (Figure 5b). However, for both mouse strains it was 

not correlated to serotonin, 5-HT and 5-hydroxyindole acetic acid concentrations, unlike the 

metabolites in the NAD biosynthesis and xanthurenic pathways, suggesting the latter two 

pathways are in part regulated by the total concentration of tryptophan. For the NOD-E mice 

the pathway from kynurenine to xanthurenic acid was more pronounced than that found in 

NOD mice, while correlations were more evenly spread across metabolites including 

anthranilic acid and quinolinic acid for NOD mice. 

 

 

Figure 5. A: Pearson correlation plots for the tryptophan pathway for NOD and NOD-E mice. 

Correlations were calculated for each pair of metabolites with the circle representing the 

magnitude of the correlation coefficient. B: The tryptophan pathway mapped in the 

correlation analysis in A. Key: 5-HT 5-hydroxytryptophan, 5-HIAA 5-Hydroxyindole acetic 

acid. 

 

Alterations in metabolism in the pancreas using lipidomics: 

Our lipidomic analysis was applied to the pancreas samples to further investigate whether 

blood plasma based biomarkers reflected changes in the pancreas across the mouse 

models examined. For the positive ionisation mode analysis of the pancreas extracts (Figure 
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6a), 470 variables were detected across the dataset and these were imported into the 

multivariate models. Examining samples from mice regardless of age, again, the samples 

from the NOD, NOD-E and NOD-SCID mice were compared and OPLS-DA readily 

separated the three mouse genotypes according to their lipidomic profiles (Figure 6b) 

demonstrating the profound difference between the three mouse models. This model was 

improved by a two group comparison where the NOD-SCID mice were compared with a 

combined group of NOD and NOD-E mice (Figure 6c), although one must be aware of the 

relatively small number of NOD-SCID animals in this comparison. This was in part driven by 

increased concentrations of sphingomyelins SM(d34:2) (m/z = 701.558, [M+H]+) and 

SM(d38:2) (m/z = 757.621, [M+H]+],  SM(d40:2) (m/z = 785.652, [M+H]+) and the 

sphingolipid Cer (t34:0) (m/z = 594.581, [M+K]+]) in the pancreas tissue of NOD-SCID mice, 

and increases in the concentrations of TG (46:1) (m/z = 815.636, [M+K]+), PC (33:4) (m/z = 

762.506, [M+Na]+), PC (34:2) (m/z = 758.567, [M+H]+), MG (16:0) (m/z = 313.272, [M+H-

H2O]+  and unknown m/z = 760.135 in the NOD and NOD-E mice. 

Excluding samples from the NOD-SCID mice from the analysis, pancreas tissue from NOD 

and NOD-E mice could readily be distinguished (Figure 6d).  This was driven by increases 

in the concentration of lipids PE (O-36:5), (m/z = 724.526, [M+H]+), PE (O-32:0),  (m/z = 

700.523, [M+Na]+), PE (P-38:6; (m/z = 748.526, [M+H]+), unknown m/z = 753.558 and 

SM(39:1) (m/z = 773.652, [M+H]+) in the NOD mice and increases in Cer (d34:1) (m/z = 

538.518, [M+H]+), DG (40:3) (m/z = 699.592, [M+H-H2O]+), TG (48:1) (m/z = 843.681, 

[M+K]+) and DG (40:5) (m/z = 671.565, [M+H]+) lipids in NOD-E mice. 

To further examine the metabolic changes in the pancreas we examined NOD and NOD-E 

mice aged 16 weeks of age and older, comparing NOD mice that had either developed or 

not developed diabetes. However, no model could be built that discriminated between NOD 

and NOD-E mice, and a combined NOD-E, NOD and NOD non diabetic model, suggesting 

that metabolic differences were most apparent at the earlier time points. To confirm this, a 

robust model was built comparing the lipid profiles of pancreas from mice aged 12 weeks 

and under (Figure 6e). This was caused by increases in TAG (34:1), (m/z = 647.4563, 

[M+K]+); PE-Ceramide (d27:2, putative) (m/z = 583.383, [M+H]+); TAG (46:8), (m/z = 

801.548, [M+H]+) and PE (O-36:5) or PE(P-36:4); (m/z = 724.526, [M+Na]+) and decreases 

in PS(O-40:5) (m/z = 824.588, [M+H]+; PE (30:2),(m/z = 660.421, [M+H]+]), PE (32:2), (m/z 

= 688.451, [M+H]+) and PC (O-38:4), (m/z = 818.601, [M+Na]+) in the pancreas of NOD 

mice. 
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Figure 6. A: High resolution mass spectrum of a typical pancreas extract from the NOD 

mouse. B: OPLS-DA plot of lipidomics of the pancreas comparing NOD (red circles), NOD-E 

(green circles) and NOD-SCID (yellow circles) mice. Data is univariate scaled. R2(X) = 79%, 

R2(Y) = 89%; Q2 = 61%; p = 4.5*10-12 by CV-ANOVA for cross validation. 2 components and 

7 orthogonal components. C: OPLS-DA plot of lipidomics of the pancreas comparing NOD-

SCID mice (yellow circles) compared with the other NOD and NOD-E mice (red circles) 

treated as a single group. R2(X) = 74%; R2(Y) = 92%; Q2 = 79%; p = 1.3*10-13, 1 component 

and 4 orthogonal components. D. OPLS-DA plot of lipidomics of the pancreas comparing 

NOD (red circles) and NOD-E (green circles) mice across all ages. R2(X) = 76%; R2(Y) = 

92%; Q2 = 60%; p = 7.6*10-9, 1 component and 6 orthogonal components. E. OPLS-DA plot 

of lipidomics of the pancreas comparing NOD and NOD-E mice under 14 weeks of age. 
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R2(X) = 49%; R2(Y) = 81%; Q2 = 63%; p = 5.2*10-8, 1 component and 2 orthogonal 

components. 

 

Alterations in amino acid metabolism in the pancreas: 

Repeating the amino acid based assay analysis for the pancreas, again the pancreas of the 

NOD-SCID mice were significantly different from the other two mouse models either treating 

all three models as distinct groups (data not shown) or comparing the NOD-SCID mice with 

a combined group of NOD and NOD-E mice (Figure 7a). This was driven by increases in 

riboflavin, thiamine, anthranilic acid, methionine and dimethylglycine in the NOD-SCID mice 

and increases in phosphocholine, 3-phosphoserine, creatine, cytosine and cytidine in the 

other two strains. Similar results were produced when the data was Pareto scaled (Figure 

7b).  

Repeating the analysis but comparing the NOD and NOD-E mice another robust OPLS-DA 

was built (R2(X) = 42%; R2(Y) = 99%; Q2 = 70%; CV-ANOVA p = 0.04; Figure 7c). The 

pancreas from NOD mice had increased concentrations of alanine (p = 0.003 for a Student’s 

T-test univariate analysis), asparagine (p = 0.03), xanthine, NADH, arginosuccinate and 

glucose while the pancreas from NOD-E mice were most characterised by relative increases 

in a range of aromatic amino acids including indole (p = 0.004), xanthurenate (p = 0.002), 

tryptophan (p = 0.001), S-adenosyl homocysteine (p = 0.0006), 5-HT (p = 0.0004) and 

serotonin (p = 0.0002) as well as methionine (p = 000003). S-adenosyl homocysteine, 5-HT, 

serotonin and methionine also passed the threshold for Bonferroni correction (p = 0.00047). 

Similar results were produced when the data was Pareto scaled (Figure 7d).  
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Figure 7: A: OPLS-DA plot of targeted core metabolism of extracts of pancreas tissue 

comparing the NOD-SCID mouse (green circles) to a combined group of NOD and NOD-E 

mice (red circles), regardless of age. Data is univariate scaled. R2(X) = 37%; R2(Y) = 96%; 

Q2 = 82%; CV-ANOVA p = 2.8*10-6, 1 component and 2 orthogonal components. B: S-plot of 

most discriminatory metabolites in a Pareto scaled OPLS-DA model using the data analysed 

in A.  C: OPLS-DA plot of targeted core metabolism of extracts of pancreas tissue 

comparing the NOD mouse (red circles) to NOD-E mice (green circles), regardless of age. 

Data is univariate scaled. R2(X) = 42%; R2(Y) = 99%; Q2 = 70%; CV-ANOVA p = 0.04, 

1component and 2 orthogonal components. D: S-plot of most discriminatory metabolites in a 

Pareto scaled OPLS-DA model using the data analysed in C.   

 

Modelling correlated metabolism between blood plasma and the pancreas 

To examine whether metabolic changes in the pancreas manifested themselves in blood 

plasma, OPLS was used to regress changes in aqueous metabolism in the pancreas against 

the same metabolites detected in blood plasma across 23 week old NOD, NOD-E and NOD-

SCID mice. Applying this approach to all the mouse models a weak OPLS model was built (2 
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components and 2 orthogonal X components; R2(X) = 53%; R2(Y) = 54%; Q2 = 8%; 

Supplementary Figure 1a). The most correlated metabolite between the two tissues was 

betaine (p = 0.005) and β-hydroxyisovalerate (p = 0.007). Next we examined correlations 

within individual strains. While no model could be built for the NOD-SCID mice and only a 

poor model for the NOD mice was produced (2 components and no orthogonal components; 

R2(X) = 55%; R2(Y) = 60%; Q2 = 16%), a robust model was built for NOD-E mice (3 

components, 3 orthogonal X components and 3 orthogonal Y components; R2(X) = 99%; 

R2(Y) = 99%; Q2 = 100%). This was driven by changes in the correlation of serine (p = 

0.046), citrulline (p = 0.030), taurine (p = 0.033), aminoisobutyric acid (p = 0.042), 

homocysteine (p = 0.039), GABA (p = 0.046), histamine (p = 0.024), 3-hydroxyanthranilic 

acid (p = 0.03), betaine (p = 0.032), α-glycerophosphocholine (p = 0.048), creatine (p = 

0.036), cytosine (p = 0.02), xanthosine (p = 0.034), beta-hydroxyisovaleric acid (p = 0.03), 

adenine (p = 0.04), cytidine (p = 0.044), SAH (p = 0.41), N-acetylglutamate (p = 0.036, N-

acetylglutamine (p = 0.038) (Supplementary Figure 1b). 

Examining changes in the gut metabolome 

To investigate whether changes in the mouse metabolome could be related to alterations in 

the gut metabolome we examined the metabolite composition of faeces from NOD and 

NOD-E mice using GC-MS to examine the total fatty acid compliment and LC-MS/MS to 

examine the aqueous metabolome. While no PLS-DA or OPLS-DA models could be built 

separating the spectral profiles at 6 weeks or 12 weeks of age (n=6 for both groups), a time 

trend was detected using PLS considering either all mice (for total fatty acids: 2 components; 

R2(X) = 0.42, R2(Y) = 0.56, Q2 = 0.25); for aqueous metabolites: 4 components, R2(X) = 0.71, 

R2(Y) = 0.88, Q2 = 0.37) (data not shown) or NOD mice (for total fatty acids: 2 components 

R2(X) = 0.45, R2(Y) = 0.88, Q2 = 0.62; for aqueous metabolites: 2 components, R2(X)=0.55, 

R2(Y) = 0.74, Q2 = 0.38) (Supplementary figure 2). For the NOD mice this was driven by an 

increase in C14:1, C18:3n-6 and C18:3n-3 fatty acids, serotonin, guanosine, creatine and 

trimethylamine, and a decrease in C16:0, C18:0 and C20:0 fatty acids, ADMA, taurine, 

citrate and α-ketoisocaproic acid. 

 

Discussion: 

The NOD mouse and its related strains have been major research tools for 

understanding how T1DM arises across the natural life course of the animal 38. The mouse 

develops a number of autoantibodies as it ages including those recognising autoantigens 

insulin, IA-2 and glutamic acid decarboxylase that, as in humans, provide markers of 
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ongoing beta cell destruction. The NOD mouse has been the subject of a number of 

previous metabolomic studies which have used the reproducible time course and incidence 

of T1DM  in this model to follow metabolic changes that accompany the development of 

T1DM 16,18,39-41. However, these studies have focussed solely on NOD mice, and thus it is 

difficult to disentangle any metabolic changes that are associated with ageing in the animal 

from the subsequent age related changes associated with the development of T1DM. To 

address this Fahrmann and colleagues 18 compared NOD mice that developed T1DM with 

those that did not across the time course. In the present study we took an alternative 

strategy and compared the metabolic profiles of blood plasma and pancreatic tissue from 

NOD, NOD-E and NOD-SCID mice, the latter two strains being protected from the 

development of T1DM compared with NOD mice. 

We compared both lipid and aqueous metabolism changes in both blood plasma and 

pancreas tissue across the three mouse models, and a striking result was the discrimination 

of NOD-SCID mice from the NOD and NOD-E strains. In terms of both intact lipids and the 

core metabolic pathways measured in our aqueous assays, NOD-SCID mice were readily 

discriminated from the other two strains and in cross validation of the associated pattern 

recognition models, NOD-SCID mice could be classified with 100% success according to 

their metabolic profiles regardless of age. The profound metabolic differences, which 

discriminate the NOD-SCID mice from the other two strains indicate that this model is a poor 

control strain to compare with NOD mice when considering the metabolic changes that 

accompany T1DM. As a result we have focussed on the discrimination between NOD and 

NOD-E mice in terms of the metabolic changes that accompany the development of T1DM. 

We focussed on female mice given the sexual dimorphism of the risk of developing T1DM. 

Females mice are more likely to develop T1DM and this is thought to be due to both a sex-

specific, epistatic interaction with Idd4.1 in females 42 and differential interactions with the gut 

microflora in male and female NOD mice 43. 

Across both lipid and aqueous metabolites datasets in both blood plasma and the 

pancreas we could discriminate NOD and NOD-E mice readily, and indeed in NOD mice 

younger than 14 weeks, and hence prior to the onset of T1DM, it was possible to 

discriminate mice according to their lipid and aqueous profiles from the NOD-E strain. 

Examining the RIP CD154 x RAG-/- mouse, a different model for T1DM produced by 

expressing CD154 under the rat insulin promoter crossed into the immuno-deficient 

recombination-activating gene (RAG) knockout mouse, Overgaard and colleagues have also 

shown that metabolic changes pre-date the development of overt T1DM. Indeed some of the 

metabolic changes were similar between the CD154 x RAG-/- mouse and the NOD mouse 

with decreases in lysophosphatidylcholines and decreased methionine (detected in the 
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pancreas of NOD mice), as well as increases in ceramides in the CD154 x RAG-/- mouse 15. 

Indeed, La Torre and colleagues have even detected decreases in phosphatidylcholines and 

phosphatidylethanolamines in cord blood of children at birth who subsequently go on to 

develop T1DM compared with children matched for HLA risk, sex, date of birth and 

gestational age but who do not develop the disease 17,44. However, it was not possible to 

discriminate between NOD mice that did not develop autoimmune diabetes from NOD-E 

mice at 25-30 weeks, suggesting that metabolism normalises for those NOD mice that avoid 

autoimmune diabetes in the normal disease aetiology. 

In terms of different classes of metabolites, one of the biggest changes was 

associated with amino acid metabolism, both in terms of discrimination of the three strains of 

mice and the progression of the disease in NOD mice. Alterations in amino acid metabolism 

have been reported in a number of previous studies. Lu and co-workers have previously 

identified alterations in 5-oxoproline, glutamate and homocysteine as being common to 

T1DM, type 2 diabetes (T2DM) and fulminant type 1 diabetes in patients compared with a 

control group 45. Deja and co-workers correlated increased concentrations of alanine and 

valine with increased concentrations of glycated haemoglobin (HbA1c) using 1H NMR 

spectroscopy of urine 46. Indeed, alterations in amino acid metabolism appears to be a 

central feature of both T2DM and other rarer forms of diabetes. Perhaps the most robust 

metabolic markers for predicting future T2DM incidence are branch chain amino acids, and 

Patel and colleagues, investigating A-β+ ketosis-prone diabetes using stable isotope 

techniques to follow metabolic flux noted that although sufferers had normal oxidation rates 

of fatty acids and acetyl-CoA, there was increased leucine oxidation, conversion of 

glutamine to glutamate but impaired conversion of glutamate to 2-oxoglutarate and reduced 

flux into the citrulline cycle 47. In the present study blood plasma from NOD mice were 

characterised by increases in arginosuccinate and a reduction in ornithine, similarly 

indicating alterations in the citrulline cycle consistent with a reduction in urea production. The 

turnover of the citrulline cycle, and in particular metabolites around arginine, suggests that 

there may be increased NO production and could be associated with activated macrophages 

and subsequent pathology. Xanthine, a purine breakdown product and a precursor for uric 

acid, was also found to be increased in the pancreas of NOD mice. Increased purine 

catabolism and the induction of xanthine oxidase has previously been linked to T1DM 

associated diabetic nephropathy in streptozotocin-dosed rats, presumably through the 

generation of ROS species in the kidneys 48. Further evidence of dysfunction in the kidneys 

is suggested by the increased creatinine concentrations in the blood plasma of NOD mice in 

the present study.   
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It has previously been observed that nicotinamide has the ability to both prevent 

T1DM in prediabetic NOD mice and reverse the pathology in mice that exhibit hyperglycemia 

38, and one of the major changes detected in both the pancreas and blood plasma in the 

current study involved changes in the precursors of nicotinamide, NAD+ and NADP+. This 

included an increase in the niacin precursor kynurenic and decreases in serotonin and 5-HT 

in blood plasma of NOD mice and increases in xanthinine and NADH, and decreases in 

xanthurenate in the pancreas of NOD mice. The tryptophan pathway produces either 

kynurenic acid via indoleamine 2,3-dioxygenase (IDO) which ultimately can be used to 

synthesize NAD+ for energy generation, or 5-HT and serotonin via tryptophan hydroxylase, 

which can be used to synthesize melatonin (Figure 5b). Considering the three pathways that 

branch off tryptophan, while NOD-E mice demonstrated high correlations between 

kynurenine, kynurenic acid and xanthurenic acid, the correlation profiles were more equally 

spread across metabolites derived from tryptophan, including the NAD-synthesis pathway. 

This suggests that different regulatory mechanisms are in operation between the two mouse 

strains. While no mechanism has been identified that links increased nicotinamide 

metabolism to the development of T1DM in the NOD mouse, the generation of reactive 

oxygen species in mitochondria, mitochondrial DNA damage and genetic interactions with 

variants in nicotinamide adenine dinucleotide hydrogen dehydrogenase subunit 2 have all 

been linked to increased relative risk of T1DM in the NOD mouse 38. Furthermore, 

inflammation is known to stimulate the expression of IDO in dendritic cells to increase 

kynurenic acid concentration 49, and alterations in this pathway have previously been 

detected in patients with T1DM 50. In addition, the tryptophan pathway has been highlighted 

in a number of chronic diseases as well as ageing 51. 

Fahrmann and colleagues 18 previously described how changes in ROS species and 

their associated products accompany the development of T1DM in the NOD mouse. While 

we did not find changes in the production of ROS products, such as oxidized amino acids 

and nucleotides, in the present study a reduction in methionine was detected in the pancreas 

of NOD mice suggesting they may have increased oxidative stress compared with NOD-E 

mice. 

 A wide range of lipid species were altered across the three strains and across the 

time courses, and a number of previous studies have highlighted altered lipid metabolism 

both pre and post overt T1DM 8,17,52,53. Alterations in lipid metabolism in female NOD mice 

has previously been reported by Markle and colleagues 23 who reported alterations in 

sphingolipid metabolism in female NOD mice who have a higher incidence of T1DM 

compared with male mice. These changes could be corrected if the female mice were given 

a faecal transplant from male mice, indicating these changes were in part driven by the gut 
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microflora. However, sphingolipids are not found in bacteria, suggesting the lipid changes 

were a downstream effect rather than something that directly acts on sphingolipid 

metabolism. Furthermore, Makinen and colleagues have also suggested altered sphingolipid 

metabolism in patients with type 1 diabetes-associated kidney disease 54. While we did not 

detect changes in sphingolipid metabolism in blood plasma, there were a number of 

sphingolipid species altered in the pancreas – being one of the classes of lipids that most 

readily discriminated NOD-SCID from NOD and NOD-E mice. In addition SM(39:1) was 

increased in the pancreas of NOD mice and Cer (d34:1) in the pancreas of NOD-E mice. 

 In blood plasma, the NOD mice were clearly characterised by increases in 

triglycerides containing longer, polyunsaturated fatty acids, and relative decreases in 

lysophospholipids containing longer polyunsaturated acids as well as cholesterol esters. 

Alterations in phospholipids, especially lysophospholipids, and cholesterol esters have 

previously been described in T1DM with well controlled diabetes compared with healthy 

controls 17,52,55,56, with Fievet and colleagues explaining this as arising from lipoprotein 

remodelling and an increased pro-inflammatory state for those with T1DM. Indeed, in 

children autoantibodies to a number of lysophospholipids have also been described 57, 

demonstrating the interplay between this class of lipid and autoimmune disease. 

Conclusions: 

In summary, we have used a combination of lipidomics and metabolomics to profile the 

development of T1DM in the NOD mouse and compare these changes with NOD-E and 

NOD-SCID mice, two strains that are protected from T1DM. This approach has highlighted 

that the NOD-SCID mouse provides a poor control for the NOD mouse in terms of metabolic 

changes, and indeed the most profound metabolic differences between the mouse strains 

were between NOD-SCID and the other two strains, regardless of diabetic status, 

underlining how different the NOD-SCID mice are. When comparing the NOD and NOD-E 

mice the most consistent metabolic changes are in the tryptophan pathway and in particular 

in the synthesis of kynurenic acid derivatives, and a reduction in lysophospholipids. Both 

pathways have previously been implicated in modulating immune responses, underlying the 

interplay between metabolism and inflammation. As well as highlighting metabolic 

mechanisms that could be targeted to treat T1DM, such metabolic markers of disease could 

be used in the future to target immune-suppression therapies to reduce the likelihood of 

developing T1DM in at risk populations.  

 

Supporting Information: 
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The following files are available free of charge at ACS website http://pubs.acs.org:  
Supplementary Data_NOD_mouse_paper: This file contains a detailed description of the 
mice used in this study, supplementary figures 1-2 and supplementary tables. 
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Figure legends 

Figure 1: A: High resolution mass spectrum of a typical lipid extract from blood plasma 

derived from the NOD mouse. B. OPLS-DA plot of lipidomics of blood plasma from NOD, 

NOD-E and NOD-SCID mice considered as separate groups. Data is Pareto scaled. R2(X) = 

75%, R2(Y) = 48%; Q2 = 34%; p = 3.5*10-22 by CV-ANOVA for cross validation. 2 

components and 6 orthogonal components. C. OPLS-DA plot of lipidomics of blood plasma 

from NOD-SCID mice compared with a combined group of NOD and NOD-E mice (labelled 

Both). Data is Pareto scaled. R2(X) = 69%; R2(Y) = 68%; Q2 = 51%; p = 5.8*10-34. 1 

component and 6 orthogonal components. D. OPLS-DA plot of lipidomics of blood plasma 

from NOD and NOD-E mice. Data is Pareto scaled. R2(X) = 57%, R2(Y) = 41%, Q2 = 23%; p 

= 5.4*10-9, 1 component and 3 orthogonal components. E. OPLS-DA plot of lipidomics of 

blood plasma from NOD and NOD-E mice under 14 weeks of age. Data is Pareto scaled. 

R2(X) = 43%, R2(Y) = 32%, Q2 = 23%, p = 1.2*10-7, 1 component and 1 orthogonal 

component. F. OPLS-DA plot of lipidomics of blood plasma from NOD and NOD-E mice 

aged 14 weeks and over. Data is Pareto scaled. R2(X) = 56%, R2(Y) = 80%, Q2 = 54%; 

p=2.2*10-5, 1 component and 4 orthogonal components. G. OPLS-DA plot of lipidomics of 

blood plasma from NOD (diabetic) and NOD (non-diabetic referred to as NODSTAR) mice 

aged 25-30 weeks and over. R2(X) = 68%; R2(Y) = 79%; Q2 = 56%; p = 2.5*10-11, 1 

component and 4 orthogonal components. 

 

Figure 2: A. OPLS-DA plot of total fatty acid analysis of blood plasma from NOD, NOD-E 

and NOD-SCID mice considered as separate groups. Data is Univariate scaled. R2(X) = 

25%; R2(Y) = 47%; Q2 = 33%. B. OPLS-DA plot of total fatty acid analysis of blood plasma 

from NOD-SCID mice compared with a combined group of NOD and NOD-E mice (labelled 

Both). Data is univariate scaled. R2(X) = 40%; R2(Y) = 80%; Q2 = 72%; p = 6.3*10-37. C. S-

plot of Pareto scaled variables from the dataset analysed for the plot in B. D. PLS plot of age 

against metabolic profile of NOD mice. Q2 = 51%, R2(X) = 27%, R2Y = 77%; p=4*10-6. 

 

Figure 3: A. OPLS-DA plot of targeted analysis of central metabolism (amino acids, TCA 

cycle intermediates, nucleotides, and other small aqueous metabolites) of blood plasma from 

NOD, NOD-E and NOD-SCID mice considered as separate groups. Data is Univariate 

scaled. R2(X) = 56%, R2(Y) = 72%, Q2 = 52%, 2 components and 4 orthogonal components; 

CV ANOVA validation p = 1.5*10-22. B. OPLS-DA plot of targeted analysis of central 
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metabolism of blood plasma from NOD-SCID mice compared with the NOD and NOD-E 

mice as a single group. R2(X) = 42%, R2(Y) = 79%, Q2 = 79%, 1 component and 2 

orthogonal components; CV-ANOVA validation p = 2.7*10-38. C. Variable Importance 

Parameter (VIP) plot to show key metabolites that are most important for the discrimination 

for the plot in B. D. OPLS-DA plot of targeted analysis of central metabolism of blood plasma 

from NOD and NOD-E mice. Data is Univariate scaled. R2(X) = 51%; R2(Y) = 76%; CV-

ANOVA validation p = 2*10-10. E. VIP plot to show key metabolites that are most important 

for the discrimination for the plot in D. F. OPLS-DA plot of targeted analysis of central 

metabolism of blood plasma from NOD and NOD-E mice below 14 weeks of age. Data is 

Univariate scaled. R2(X) = 44%, R2(Y) = 84%, Q2 = 74%, 1 component and 2 orthogonal 

components; CV ANOVA validation p = 2.7*10-38. G. OPLS-DA plot of targeted analysis of 

central metabolism of blood plasma from NOD and NOD-E mice 14 weeks and older of age. 

Data is Univariate scaled. R2(X) = 64%, R2(Y) = 82%, Q2 = 51%, 1 component and 4 

orthogonal components; CV-ANOVA validation p = 2.7*10-38. H. SUS-plot of discriminatory 

metabolites for models described in F and G.  

 

Figure 4. A: PLS model of targeted analysis of central metabolism of blood plasma from 

NOD mice against age (R2X = 53%, R2Y = 79%, Q2 = 65%). B: SUS-plot of PLS models for 

NOD mice and NOD-E mice against age. In this plot the loadings for the two PLS models are 

plotted against each other so that if the two models had the same loadings then these would 

line up at 45° to the x and y-axes. While some metabolites are in common there is also a 

degree of scatter from the 45° line showing that other metabolites are responsible for the 

ageing trends in the NOD and NOD-E mice. 

 

Figure 5. A: Pearson correlation plots for the tryptophan pathway for NOD and NOD-E mice. 

Correlations were calculated for each pair of metabolites with the circle representing the 

magnitude of the correlation coefficient. B: The tryptophan pathway mapped in the 

correlation analysis in A. Key: 5-HT 5-hydroxytryptophan, 5-HIAA 5-Hydroxyindole acetic 

acid. 

 

Figure 6. A: High resolution mass spectrum of a typical pancreas extract from the NOD 

mouse. B: OPLS-DA plot of lipidomics of the pancreas comparing NOD (red circles), NOD-E 

(green circles) and NOD-SCID (yellow circles) mice. Data is univariate scaled. R2(X) = 79%, 
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R2(Y) = 89%; Q2 = 61%; p = 4.5*10-12 by CV-ANOVA for cross validation. C: OPLS-DA plot 

of lipidomics of the pancreas comparing NOD-SCID mice (yellow circles) compared with the 

other NOD and NOD-E mice (red circles) treated as a single group. R2(X) = 74%; R2(Y) = 

92%; Q2 = 79%; p = 1.3*10-13. D. OPLS-DA plot of lipidomics of the pancreas comparing 

NOD (red circles) and NOD-E (green circles) mice across all ages. R2(X) = 76%; R2(Y) = 

92%; Q2 = 60%; p = 7.6*10-9. E. OPLS-DA plot of lipidomics of the pancreas comparing NOD 

and NOD-E mice under 14 weeks of age. R2(X) = 49%; R2(Y) = 81%; Q2 = 63%; p = 5.2*10-8.  

 

Figure 7: A: OPLS-DA plot of targeted core metabolism of extracts of pancreas tissue 

comparing the NOD-SCID mouse (green circles) to a combined group of NOD and NOD-E 

mice (red circles), regardless of age. Data is univariate scaled. R2(X) = 37%; R2(Y) = 96%; 

Q2 = 82%; CV-ANOVA p = 2.8*10-6. B: S-plot of most discriminatory metabolites in a Pareto 

scaled OPLS-DA model using the data analysed in A.  C: OPLS-DA plot of targeted core 

metabolism of extracts of pancreas tissue comparing the NOD mouse (red circles) to NOD-E 

mice (green circles), regardless of age. Data is univariate scaled. R2(X) = 42%; R2(Y) = 99%; 

Q2 = 70%; CV-ANOVA p = 0.04. D: S-plot of most discriminatory metabolites in a Pareto 

scaled OPLS-DA model using the data analysed in C.   
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