2,223 research outputs found

    Joint research into the behaviour of driven piles

    Get PDF
    Large driven piles are used widely in both onshore and offshore construction. Predicting their limiting capacities and load-displacement behaviour under a range of static and cyclic, axial, lateral and moment loading conditions is critical to many engineering applications. This paper reviews relevant recent joint research by groups at Imperial College London (ICL) and Zhejiang University China (ZJU). Two tracks of enquiry are outlined: (i) assembling and analysing a major and open database of high quality load tests conducted on industrial scale piles at well characterised sites; and (ii) modelling the effective stress regime developed around piles driven in sands. Both avenues of research are vital to enabling scientifically well-founded and yet industrially credible improvements to practical pile design methods. The scope of future joint research is also outlined

    Correlated EEMD and effective feature extraction for both periodic and irregular faults diagnosis in rotating machinery

    Full text link
    © 2017 by the authors. Licensee MDPI, Basel, Switzerland. Intelligent fault diagnosis of complex machinery is crucial for industries to reduce the maintenance cost and to improve fault prediction performance. Acoustic signal is an ideal source for diagnosis because of its inherent characteristics in terms of being non-directional and insensitive to structural resonances. However, there are also two main drawbacks of acoustic signal, one of which is the low signal to noise ratio (SNR) caused by its high sensitivity and the other one is the low computational efficiency caused by the huge data size. These would decrease the performance of the fault diagnosis system. Therefore, it is significant to develop a proper feature extraction method to improve computational efficiency and performance in both periodic and irregular fault diagnosis. To enhance SNR of the acquired acoustic signal, the correlation coefficient (CC) method is employed to eliminate the redundant intrinsic mode functions (IMF), which comes from the decomposition procedure of pre-processing known as ensemble empirical mode decomposition (EEMD), because the higher the correlated coefficient of an IMF is, the more significant fault signatures it would contain, and the redundant IMF would compromise both the SNR and the computational cost performance. Singular value decomposition (SVD) and sample Entropy (SampEn) are subsequently used to extract the fault feature, by exploiting their sensitivities to irregular and periodic fault signals, respectively. In addition, the proposed feature extraction method using sparse Bayesian based pairwise coupled extreme learning machine (PC-SBELM) outperforms the existing pairwise-coupling probabilistic neural network (PC-PNN) and pairwise-coupling relevance vector machine (PC-RVM) by 1.8%and 2%, respectively, to achieve an accuracy of 93.9%. The experiments conducted on the periodic and irregular faults in the gears and bearings have demonstrated that the proposed hybrid fault diagnosis system is effective

    Stresses Developed around Displacement Piles Penetration in Sand

    No full text

    An Information System Framework and Prototype for Collaborative and Standardized Chinese Liquor Production

    Get PDF
    20th Americas Conference on Information Systems, AMCIS 2014, Savannah, GA, 7-9 August 2014There is a pressing need for Chinese liquor producers to use information systems in managing production process and improving production efficiency for meeting fiercely increasing market competition. Unlike liquor production in other countries, Chinese liquor production replies on experience and manual operations greatly, which has very low-level automation and informatization. This paper takes a famous Chinese liquor producer as the target case company, introduces typical information systems used in Chinese liquor production, explores the motivations to implement information systems, and examines the benefits, the problems encountered as well as the key success factors in implementation and applications of information systems in Chinese liquor production industry.Department of Management and MarketingRefereed conference pape

    Biodegradable cationic poly(carbonates): effect of varying side chain hydrophobicity on key aspects of gene transfection

    Get PDF
    The degree of hydrophobicity in cationic polymers plays an important but often underappreciated role in the safety and efficacy of gene delivery processes. In order to further elucidate structure-activity relationships of biodegradable cationic poly(carbonate) gene carriers, we synthesized a series of narrowly dispersed homo-polymers via metal-free organocatalytic living ring-opening polymerization (ROP) of cyclic carbonate monomers bearing either alkyl (propyl, hexyl or nonyl) or 4-methyl benzyl halide side chains. The polymers were then quaternized using bis-tertiary amines to install both quaternary ammoniums and tertiary amines for DNA binding and endosomal escape, respectively. Among the polymers with similar molecular lengths and charge densities, it was found that an increase in side chain alkyl spacer length from 3 to 6 carbons significantly enhanced cellular uptake and luciferase gene expression in HepG2 and HeLa cell lines without causing overt hemolysis and cytotoxicity. A further increase of side chain alkyl length to 9 carbons, however, led to a drastic decline in gene expression due to increased cellular toxicity, which was correlated with an increased disruption and lysis of red blood cell membranes. Interestingly, the incorporation of an aromatic 4-methyl benzyl spacer increased DNA binding strength, reduced particle sizes of resultant DNA complexes, and enhanced cellular uptake, leading to improved luciferase gene expression, albeit with higher levels of hemolysis and cytotoxicity. Taken together, the findings of this study demonstrate that a delicate balance between cationic charge density and hydrophobicity could be achieved by utilizing a hexyl spacer in the side chains of cationic poly(carbonates), hence providing insights on the future development of non-viral cationic polymeric gene delivery systems. Statement of Significance: Owing to their ease of synthesis and well-controlled polymerization, biodegradable cationic poly(carbonates) have emerged as a highly promising class of biomaterials for gene delivery. The hydrophobicity of side chains in cationic polymers plays an important but often underappreciated role in influencing key aspects of gene transfection. In our efforts to improve gene transfection and understand structure-activity relationships, we synthesized a series of cationic polymers bearing a common poly(carbonate) backbone, and with side chains containing various hydrophobic spacers (propyl, hexyl, 4-methyl benzyl or nonyl) before the cationic moiety. A moderate degree of hydrophobicity was optimal as the cationic poly(carbonate) with hexyl side chains mediated high gene transfection efficiencies while causing low cytotoxicities. (111 words

    The thermal analysis of cutting/grinding processes by meshless finite block method

    Get PDF
    © 2018 Elsevier Ltd Development of the Finite Block Method (FBM) is presented, with the introduction of infinite elements for the first time, for predicting stationary and transient heat conduction in cutting/grinding processes. Utilizing the Lagrange series the first order partial differential matrix is derived, adopting a mapping technique, followed by the construction of the higher order derivative matrix. For linear stationary heat conductivity three free parameters including the velocity of the workpiece, the cooling coefficient and the inclined angle of the contact zone, together with their effects on temperature, are observed. For the transient heat conduction study, the Laplace transformation method and Durbin's inverse technique are employed. Numerical solutions are discussed and comparisons made with the finite element method and analytical solutions, demonstrating the accuracy and convergence of the finite block method

    Transmissibility of swing and vertical vibrations in human lower limb

    Get PDF
    2009-2010 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe
    corecore