The thermal analysis of cutting/grinding processes by meshless finite block method

Abstract

© 2018 Elsevier Ltd Development of the Finite Block Method (FBM) is presented, with the introduction of infinite elements for the first time, for predicting stationary and transient heat conduction in cutting/grinding processes. Utilizing the Lagrange series the first order partial differential matrix is derived, adopting a mapping technique, followed by the construction of the higher order derivative matrix. For linear stationary heat conductivity three free parameters including the velocity of the workpiece, the cooling coefficient and the inclined angle of the contact zone, together with their effects on temperature, are observed. For the transient heat conduction study, the Laplace transformation method and Durbin's inverse technique are employed. Numerical solutions are discussed and comparisons made with the finite element method and analytical solutions, demonstrating the accuracy and convergence of the finite block method

    Similar works